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ABSTRACT 

The dominant vegetation type on the Cape Peninsula, South Africa, is an oligotrophic 

shrubland that supports low numbers of medium-sized and large terrestrial mammals. Of 

these, only the adaptable and dextrous chacma baboon (Papio ursinus) has learnt to 

supplement its diet with protein-rich foods from the marine intertidal zone. There are 

qualitative descriptions of this behaviour in the literature, but the relative contribution of 

marine foods to baboon diet, the influence of lunar cycles on exploitation and the impacts of 

marine foraging on ranging behaviour and activity budgets through different seasons have yet 

to be quantified. Furthermore, all previous studies included data from troops that had access 

to nutrient-rich exotic foods, which may have reduced their reliance on marine organisms. 

For this thesis I collected behavioural data on ranging patterns, activity budgets and diet of a 

free-ranging, natural-foraging troop through full lunar tidal cycles over consecutive seasons.  

I supplemented the behavioural data with estimates of the troop’s diet composition modelled 

from stable isotope ratios of foods, faeces and hair samples. The troop ranged over 45.262 

km
2 

and travelled an average of 6.044 km per day over the study period. The troop’s activity 

budget was dominated by walking and feeding behaviour, both of which peaked during the 

hot, dry summer months.  Both spatial and behavioural data suggest that the study troop is 

nutrient-stressed relative to other troops in this population, and hence it was surprising that 

they only consumed small amounts of marine foods during all four seasons. Models 

incorporating δ
13

C and δ
15

N values of baboon faeces and hair confirmed that marine foods 

were not major dietary items for these baboons, whilst generalized additive models revealed 

that a range of abiotic factors negatively affect the exploitation of marine foods. Both the 

probability and intensity of marine foraging within a given hour declined with increasing tide 

height and swell height, and fluctuated depending on wind speed and direction. Intensity of 

marine foraging varied through seasons (it was highest in autumn and lowest in spring), and 

was higher on the east coast than on the west. Together, these results suggest that exploitation 

of nutrient-rich foods in the intertidal zone is limited by rapid, unpredictable changes in 

accessibility. The levels of deviance left unexplained by these models however imply that 

other as yet unknown factors (e.g. alkaloids in mussels and limpets) may also limit the 

troop’s exploitation of marine foods. In conclusion, this thesis represents the first in-depth 

study of marine foraging, a behaviour which exemplifies baboons’ remarkable behavioural 

and dietary flexibility. That said, the temporal unpredictability of ease of access, and potential 

dangers associated with harvesting this resource, appear to limit how much of this high-

nutrient food resource baboons are able utilise. 
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LITERATURE REVIEW 

Behavioural trade-offs and activity budgets 

The amount of time available for allocation to different activities is limited by the length of a 

primate’s activity cycle each day (Dunbar and Dunbar, 1988; Hill et al., 2003). Certain 

activities are mutually exclusive, so the amount of time allocated to one activity can be 

increased only at the expense of another (McFarland, 1974). Non-human primates (hereafter 

referred to as “primates”) are therefore forced to make behavioural choices between, for 

example, foraging- and social behaviour (Butynski, 1990; Di Fiore and Rodman, 2001). 

Primates’ activity budgets are largely controlled by food availability in their home ranges 

(Nakagawa, 1989; Kurup and Kumar, 1993; Ménard and Vallet, 1997; O’Brien and Kinnaird, 

1997; Overdorff et al., 1997), which suggests that acquiring and ingesting food takes 

precedence over other activities, at least until daily nutrient requirements are met. Sacrificing 

time spent engaged in other activities may however have far-reaching consequences for a 

primate’s survival and, ultimately, its fitness (Dunbar, 1991; Silk et al., 2003, 2009; Wittig et 

al., 2008; Sapolsky, 2009; Schülke et al., 2010). Primates might therefore be expected to 

exploit those foods which allow them to meet their daily nutrient-requirements in the shortest 

possible time. 

 

Primate food choice and foraging ecology 

Primate food choice and foraging ecology have received a great deal of attention in the 

literature, in both laboratory- and field-based studies (e.g. Ayres, 1989; Leighton, 1993; 

Krishnamani, 1994; Chapman et al., 2003; Hanya, 2003; Hill and Dunbar, 2003; Dew, 2005; 

Codron et al., 2006; Felton et al., 2009; Kool, 2011). Properties of foods that have been 

shown to affect primate food choice include protein content, fibre content, protein-to-fibre 

ratio and concentration of secondary metabolites that inhibit digestion (Oates et al., 1977; 

Milton, 1979; McKey, 1981; Glander, 1982; Calvert, 1985; Whiten et al., 1991; Barton and 

Whiten, 1994). These properties drive long-term patterns of food choice (Glander, 1982; 

Whiten et al., 1991; Barton and Whiten, 1994), but recent studies suggest that food choices 

on a given day are not made in isolation. Felton et al. (2009) found that spider monkeys 

(Ateles chamek) maintain a constant daily protein intake, while allowing total energy intake 

to vary. A study by Johnson et al. (2013) revealed that chacma baboons (Papio ursinus) on 

the other hand forage selectively to maintain a constant protein-to-non-protein energy ratio in 

their daily food intake. In contrast to both A. chamek and P. ursinus, mountain gorillas 
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(Gorilla beringei) over-ingest protein under certain circumstances in order to maintain a 

consistent daily non-protein energy intake (Rothman et al., 2011). These findings suggest 

that, with the exception of large, folivorous primates, primates adopt foraging strategies that 

allow them to maintain constant daily protein intake, be it an absolute amount or relative 

proportion of total daily caloric intake. Primate food choice might therefore vary at different 

times within a day, but the general pattern remains that small to medium-sized primates 

prefer protein-rich foods that contain little fibre and have low concentrations of tannins 

(Glander, 1982; Whiten et al., 1991; Chapman and Chapman, 2002). 

Food availability in different habitats fluctuates through time however (Post, 1982; 

Chapman et al., 1999; Stone, 2007), and situations may arise in which preferred foods are in 

short supply or are entirely absent from a primate’s home range (Tutin et al., 1997; Furuichi 

et al., 2001; Yiming, 2006). Studies have shown that primates alter their foraging behaviour 

in response to such shortages by switching to so-called ‘fallback foods’ (Altmann, 1998; 

Hanya, 2004a; Alberts et al., 2005; Grueter et al., 2009). These are foods that are readily 

available, but provide poorer nutritional rewards than preferred foods (Wrangham et al., 

1998; Hanya, 2004a; Marshall and Wrangham, 2007), or provide rewards that are comparable 

to those provided by preferred foods, but which have higher processing costs in time and 

energy (Alberts et al., 2005; see Marshall et al., 2009 for a review). If a primate is to meet 

nutritional requirements by feeding only on fallback foods it must therefore dedicate a great 

deal of time to either ingesting large amounts of low-quality fallback food items, or 

processing and ingesting few high-quality fallback food items. Thus, as preferred food 

availability declines, so primates tend to increase the amount of time allocated to feeding-

related activities (Dunbar, 1992; Gursky, 2000; Alberts et al., 2005; Stone, 2007). This is 

done at the expense of other activities (Dunbar, 1992; Gursky, 2000; Alberts et al., 2005), 

which, as mentioned above, may result in a drop in the animal’s fitness.  

A nutrient-stressed primate should be able to avoid this change in behaviour (and the 

concomitant drop in fitness), if it were able to exploit novel, nutrient-rich foods within its 

home range. Primates that might be more likely to do this would be those that exhibit 

neophilic behaviour and are able to feed on a wide variety of foods, such as baboons (Papio 

spp.; Altmann and Altmann, 1970; Whiten et al., 1991; Bergman and Kitchen, 2009). 

 

Baboon dietary flexibility 

Baboons are medium-sized, group-living primates that inhabit diverse habitats throughout 

much of sub-Saharan Africa (DeVore and Hall, 1965). They forage in terrestrial- and arboreal 
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habitats, and are therefore able to incorporate a wide variety of plant- and animal foods into 

their diet (Hall, 1962; Altmann and Altmann, 1970; Hamilton et al., 1978; Whiten et al., 

1991). Although animal-derived foods (which are rich in protein) may be ingested on a 

regular basis, plant foods typically make up a much larger portion of baboon diet (Hamilton 

et al., 1978; Whiten et al., 1987). Baboons will however favour animal foods when these are 

readily available, and may even exclude plant foods from their diet entirely over short periods 

(Hamilton et al., 1978). This follows the abovementioned pattern of food preference found in 

other primates, and suggests that baboons favour plant foods simply because these are more 

abundant and more easily acquired, in most habitats (Hamilton et al., 1978). 

In savannah-type habitats for example, items that are incorporated into baboon diets 

include fruits, flowers, leaves, tree gum, seeds and seed pods, underground storage organs, 

insects, and meat of various vertebrates (Altmann and Altmann, 1970; Post, 1982; Barton et 

al., 1993; Alberts et al., 2005). Preferred plant foods, such as fruits, flowers, seeds, and young 

leaves are abundant at certain times, but availability varies seasonally, and baboons are thus 

forced to switch to fallback foods at certain times of the year (Altmann, 1998). For the 

baboons of the Amboseli basin, Kenya, perhaps the most important fallback foods are corms 

of various grass species (Altmann, 1998; Alberts et al., 2005). Corms are comparable to 

preferred foods in terms of the nutritional rewards they provide (Altmann, 1998), but are only 

favoured when other plant foods are scarce (i.e. during the dry season), because they require 

substantial processing prior to ingestion (Alberts et al., 2005). Thus, in habitats such as this, 

high-quality plant foods with high associated foraging costs are considered to be the fallback 

foods of choice for baboons. 

Animal foods make up a very small proportion of savannah baboons’ diets (Altmann 

and Altmann, 1970; Altmann, 1998), despite offering a rich source of protein (Hamilton et 

al., 1978). It seems likely that the costs of finding, chasing and catching the highly mobile 

prey available in savannahs (e.g. grasshoppers, lizards and smaller primates) (Rhine et al., 

1986), and the time required to chew raw vertebrate meat (Wrangham and Conklin-Brittain, 

2003; Hardus et al., 2012), preclude the use of animal foods as a major component of their 

diet. This may not be the case for baboons that inhabit temperate coastal areas however, as 

marine intertidal zones in such regions are occupied by sedentary and slow-moving animals 

whose tissues are rich in protein and other macronutrients (Karakoltsidis et al., 1995; 

Fleurence, 1999; Norziah and Ching, 2000; Smith and Partridge, 2004). These marine foods 

might provide an important alternative to terrestrial fallback foods for local baboons. This is 
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however contingent on the abundance of these organisms, and the ease with which they can 

be exploited by terrestrial animals. 

 

“Maritime mammals” 

Coastal marine waters are among Earth’s most productive habitats  (Lieth, 1978; Polis and 

Hurd, 1996). Under favourable conditions in coastal waters, marine algae exhibit extremely 

rapid growth (Mann, 1973; Pihl et al., 1996) and produce nutrient-rich tissues (Fleurence, 

1999; Norziah and Ching, 2000; Wong and Cheung, 2000). These algae support diverse 

consumers, which may occur at extraordinary densities in the intertidal zone (Paine, 1974; 

Bustamante et al., 1995; Blanchette and Gaines, 2007). Biomass of both plants and animals 

therefore accumulates rapidly in these environments. In several regions, particularly where 

upwelling occurs, coastal marine systems are vastly more productive than neighbouring 

terrestrial habitats (Seely, 1978, 1984; Ware, 1992; Acha et al., 2004; Pennington et al., 2006; 

Warren-Rhodes et al., 2006; Iriarte et al., 2007; Davila et al., 2008). 

Considering disparities in productivity between habitats across the coastal ecotone, it 

is unsurprising that a variety of terrestrial mammals supplement their diet with marine foods 

from the intertidal zone (Dalquest, 1948; Moore, 2002; Carlton and Hodder, 2003; Gaydos 

and Pearson, 2011). Carlton and Hodder (2003) refer to those “coastal mammalian predators 

that utilise living intertidal energy resources and transfer these resources to the land” as 

“maritime mammals”. It is important to note however, that these authors define “predation” 

as consumption of “living (not detrital) marine invertebrates, fish, algae, and seagrasses”, so 

reference to a “maritime mammal” does not imply that the animal in question is a carnivore. 

That said, more maritime mammals (22 out of 45 species) belong to the Carnivora than to any 

other order—Rodentia and Artiodactyla are the only other orders represented by more than 

just one or two species (Carlton and Hodder, 2003). 

Examples of maritime mammals in the Carnivora include the raccoon (Procyon lotor; 

Tyson, 1950), badger (Meles meles; Sleeman et al., 2001), several species of fox (Murie, 

1959; Huey, 1969; West, 1987), coyote (Canis latrans; Rose and Polis, 1998), black-backed 

jackal (Canis mesomelas; Nel et al., 1997) and two species of bear (Smith and Partridge, 

2004; Gaydos and Pearson, 2011). The majority of these species exploit crustaceans 

(Hartman, 1990; Nel et al., 1997) and molluscs (Dalquest, 1948; Tyson, 1950; Smith and 

Partridge, 2004) obtained in the intertidal zone. Only two species, the arctic fox (Alopex 

lagopus) and P. lotor (Tyson, 1950; Nielsen, 1991), feed on live fish which are caught in the 

shallows. Interestingly, A. lagopus (Kapel, 1999), C. latrans (Rose and Polis, 1998) and the 
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American black bear (Ursus americanus; O’Clair and O’Clair, 1998) feed on algae as well as 

marine animal prey. These are the only species in the order that do so however (Carlton and 

Hodder, 2003), so for most maritime mammals in the Carnivora, the marine component of 

their diet is comprised entirely of marine animals. 

The same is true of the majority (eight out of 12 species) of maritime rodents (Carlton 

and Hodder, 2003). Rodents such as the deer mouse (Peromyscus maniculatus; Osborne and 

Sheppe, 1971), Keen’s mouse (Peromyscus keeni; Drever et al., 2000) and Townsend’s vole 

(Microtus townsendii cowani; Drever et al., 2000) all feed on intertidal invertebrates only. Of 

the four rodent species that do not fall into this group, three feed on both marine plants and 

animals (Navarrete and Castilla, 1993; Carlton and Hodder, 2003). One of these, the Norway 

rat (Rattus norvegicus), has been particularly well-studied (Parisi and Gandolfi, 1974; Moors, 

1985; Navarrete and Castilla, 1993; Drever and Harestad, 1998; Thompson et al., 2000) and 

is known to feed on an extraordinary variety of marine foods. At a single locality, R. 

norvegicus was observed feeding on 37 marine animal species (Navarrete and Castilla, 1993). 

This dietary breadth is in stark contrast to that of the Beechey ground squirrel (Spermophilus 

beecheyi), which feeds only on marine plants, and may in fact feed on just one marine species 

(Roest, 1993). 

Most of the maritime mammals in the order Artiodactyla differ from those in the 

Carnivora and Rodentia (other than S. beecheyi), in that the marine components of their diets 

are comprised entirely of algae (Carlton and Hodder, 2003). The only maritime mammal in 

the Artiodactyla that feeds on both marine plants and animals is the feral pig, Sus scrofa; 

Chimera et al., 1995; Carlton and Hodder, 2003). Those that feed on marine plants only 

include the red deer (Cervus elaphus; Conradt, 2000), black-tailed deer (Odocoileus 

hemionus; Gaydos and Pearson, 2011), and feral goat (Capra hircus; Chimera et al., 1995) 

and sheep (Ovis aries; Hansen et al., 2003), which feed on a variety of benthic macrophytes. 

Despite the clear benefits of exploiting marine foods (see above), it seems that this 

behaviour is extremely rare in primates (Carlton and Hodder, 2003). Feeding on aquatic 

organisms has been observed in primates belonging to just four genera, namely Cebus 

(Fernandes, 1991; Port-Carvalho et al., 2004), Macaca  (Crockett and Wilson, 1980; Whitten 

and Whitten, 1982; Son, 2003; Malaivijitnond et al., 2007; Stewart et al., 2008), Papio (Hall, 

1962; Davidge, 1978; Messeri, 1978; Hamilton and Tilson, 1985; Wrangham et al., 2009), 

and Gorilla (Fay et al., 1989; Nishihara, 1995). Of these, only Macaca (Crockett and Wilson, 

1980; Son, 2003; Malaivijitnond et al., 2007) and Papio (Hall, 1962; Messeri, 1978) feed on 

marine organisms. 
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At several locations, Macaca fascicularis feeds on a variety of marine invertebrates in 

mangrove habitats (Crockett and Wilson, 1980; Son, 2003) and in the intertidal zone on rocky 

shores (Malaivijitnond et al., 2007). Two baboon species, the chacma baboon (Papio ursinus) 

and yellow baboon (Papio cynocephalus), feed on marine foods in different regions. On the 

south Somali coast, P. cynocephalus has been observed feeding on marine crabs on sandy 

beaches (Messeri, 1978) while P. ursinus at the south western tip of Africa feeds on a variety 

of marine organisms obtained largely from rocky shores (Hall, 1962, 1963; Davidge, 1978).  

Intertidal organisms may represent abundant, nutrient-rich foods, but they are not 

always available to maritime mammals as the intertidal zone is periodically submerged 

(Branch et al., 1998). Animals that feed on these organisms therefore typically time their 

forays into the intertidal zone to coincide with low tide (Nielsen, 1991; Conradt, 2000). This 

behavioural adaptation allows them to access marine organisms, but time spent feeding on 

choice intertidal foods may still be limited by tidal cycles (Hansen et al., 2003). 

Although live intertidal organisms are potentially important foods, they are not the 

only sources of marine nutrients available to terrestrial consumers. In some areas, large 

amounts of algal drift and high numbers of dead marine animals are washed ashore and left 

behind when the tide recedes (Polis and Hurd, 1995, 1996). Not surprisingly, many maritime 

mammals opportunistically exploit such resources (Dalquest, 1948; Murie, 1959; Huey, 

1969; Hiscocks and Perrin, 1987; West, 1987; Rose and Polis, 1998; Conradt, 2000; Hansen 

et al., 2003; Kuhn et al., 2008; Watts et al., 2010), which in some cases, results in significant 

increases in the amount of marine foods that are consumed (Nel et al., 1997; Conradt, 2000). 

Irrespective of the source, the addition of non-trivial amounts of marine foods to an animal’s 

diet can significantly enhance its daily food intake in terms of quantity (Rose and Polis, 1998) 

and quality (Smith and Partridge, 2004). Contributions of marine foods to the diets of 

terrestrial animals have been measured using direct observation (Hiscocks and Perrin, 1987), 

stomach content analysis (Navarrete and Castilla, 1993), scat analysis (Rose and Polis, 1998), 

and, in recent times, stable isotope analysis (Drever et al., 2000; Stapp, 2002; Chamberlain et 

al., 2005).  

Direct observation, stomach content- and scat analyses may be useful in studies of 

animal diet, but they are not without limitations. Direct observation may be difficult, or even 

impossible, if animals do not habituate to human presence (Holechek et al., 1982; Karanth et 

al., 2010), or in habitats where visibility is limited (Smith and Shandruk, 1979; Sanders et al., 

1980; Mills, 1996). Analysis of gut contents on the other hand only provides an indication of 

diet composition over relatively short periods (Stewart, 1967; Ward, 1970; Weaver, 1993), 
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and requires highly invasive sampling at best, so is therefore not used in the study of rare or 

endangered species (Holechek et al., 1982). Scat analysis does not require invasive sampling, 

but also only allows identification of foods ingested in the very recent past (Stewart, 1967; 

Weaver, 1993), and, as a result of differential digestion, may in fact provide biased estimates 

of diet composition (McInnis et al., 1983; Karanth et al., 2010). Thus, depending on the 

context and the research objectives, stable isotope analysis might be preferred over the above-

mentioned methods for use in studies of animal diet and feeding ecology. 

 

Stable isotope analysis 

Analysis of naturally occurring stable isotopes has been used as a tool in studies of trophic 

and dietary ecology with increasing frequency over the last four decades (for reviews see 

Kelly, 2000; Newsome et al., 2010; Boecklen et al., 2011). The utility of stable isotope 

analysis in ecological research arises from variation in the ratios of light- to heavy isotopes in 

different pools of a given element (Garlick, 1978; Schwarz, 1978), and the fact that these 

ratios are either preserved (Guy et al., 1993), or change predictably (DeNiro and Epstein, 

1978, 1981), through biochemical processes. Changes in isotope ratios are the result of 

isotopic discrimination or fractionation by chemical reactions (Peterson and Fry, 1987; 

Crawford et al., 2008), and have been quantified in diverse systems (Delwiche and Steyn, 

1970; Zhang et al., 1995; Berner et al., 2000; McCutchan et al., 2003). 

Researchers have used stable isotope analyses in ecological studies ranging in scale 

from animal movement patterns across continents (Kelly et al., 2002; Cryan et al., 2004; 

Hobson et al., 2012) to dietary ecology of animals at the level of the population (Darimont 

and Reimchen, 2002; Botha and Stock, 2005; Dalerum et al., 2009; Rutz et al., 2010), and 

even the individual (Yeakel et al., 2009; Newsome et al., 2010a; Blumenthal et al., 2012). 

 

Stable isotopes in dietary studies 

The isotope ratios that have been used most extensively in studies of dietary and trophic 

ecology in modern systems are those of carbon (
13

C/
12

C) and nitrogen (
15

N/
14

N) (e.g., 

Ambrose and Deniro, 1986; Baugh et al., 2004; Ben-David et al., 2004; Louys et al., 2012; 

for a detailed review see Kelly, 2000), and, more recently, sulphur (
34

S/
32

S; Felicetti et al., 

2003; Moreno et al., 2009; Salvarina et al., 2013). 

The value of stable carbon and nitrogen isotope analysis as a tool in studies of trophic 

ecology is determined by natural variation in 
13

C/
12

C and 
15

N/
14

N ratios among consumers 

and their food sources (Peterson and Fry, 1987; Kelly, 2000). In terrestrial systems variation 
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in carbon isotope ratios arises at the level of primary producers, as plants that follow the C3- 

and C4 photosynthetic pathways exhibit disparate carbon isotope ratios (Bender, 1971; 

Sternberg and DeNiro, 1983). This is a result of processes underlying the different 

photosynthetic pathways discriminating against 
13

C to different degrees (O’Leary, 1988). 

Marine algae, which follow the C3-photosynthetic pathway (Bell and Hemsley, 2000), display 

a remarkable range of carbon isotope ratios (Raven et al., 2002). There is some overlap 

between benthic algae and terrestrial C4 plants in terms of carbon isotopes, but the δ
13

C 

values of the vast majority of benthic algae are intermediate between those of terrestrial C3- 

and C4 plants (O’Leary, 1988; France, 1995). Terrestrial C3 plants are depleted in 
13

C relative 

to C3-photosynthesising marine algae because the atmospheric carbon dioxide from which 

terrestrial plants take up carbon is depleted in 
13

C relative to the dissolved carbonates from 

which marine algae obtain carbon (Craig, 1953; Smith, 1972). 

Differences in 
15

N/
14

N ratios on the other hand may arise at the base of the food chain 

(at a given location nitrogen-fixing plants differ from non-fixers in terms of 
15

N/
14

N ratios; 

Virginia and Delwiche, 1982), but this is not the only source of variation. So-called “trophic 

enrichment” in nitrogen isotopes results in isotopic differences between plants and animals at 

different trophic levels within a given system (DeNiro and Epstein, 1981; Minagawa and 

Wada, 1984; Kelly, 2000)—consumers are, on average, enriched in 
15

N by ~3.5‰ relative to 

their diets  (Minagawa and Wada, 1984; Schoeninger and DeNiro, 1984). These patterns hold 

true within systems, but the isotope ratios of the same tissues from the same species, or 

species belonging to the same functional groups, may vary across systems as a result of 

differences in source isotope ratios and/or specific fractionation factors (Cerling et al., 2003; 

Sponheimer et al., 2003a; Swap et al., 2004). 

In systems where foods are isotopically distinct, or can be sorted into biologically 

meaningful isotopically distinct groups, mathematical models can provide accurate estimates 

of the relative contributions of these sources to a consumer’s diet (Phillips, 2001; Phillips and 

Gregg, 2001; Phillips et al., 2005; Moore and Semmens, 2008; Yeakel et al., 2009; Rutz et 

al., 2010). Models used for this purpose range in complexity from simple linear models 

which incorporate ratios of just a single isotope from the consumer and two isotopically 

distinct sources, to much more complex Bayesian models which incorporate ratios of 

multiple isotopes from the consumer and multiple sources (Phillips, 2001, 2012; Parnell et 

al., 2010). The models developed by Parnell et al. (2008) in the Stable Isotope Analysis in R 

(SIAR) package, not only allow for incorporation of isotope ratios of a greater number of 

sources, but also error around the mean values for each source, the elemental concentrations 
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of the sources and different fractionation factors for different sources (Parnell et al., 2010). 

Irrespective of the type of model that is used, it is imperative that the appropriate input values 

be incorporated, be they fractionation factors or the isotope ratios themselves (Caut et al., 

2008; Bond and Diamond, 2011; Phillips, 2012). 

Isotope-based studies in which these models are used therefore typically involve 

isotopic analysis of foods known to be ingested by the animal in question, in addition to 

tissue samples taken from that animal (e.g., Hobson et al., 1999; Cerling et al., 2003; Codron 

et al., 2006). Tissues analysed thus include both biologically active tissues, such as bone, 

muscle and blood (Ambrose and Deniro, 1986; Fleming et al., 1993; Ben-David et al., 1997; 

Hobson et al., 1997), and biologically inert tissues, such as hair and feathers (Thompson and 

Furness, 1995; Mizukami et al., 2005a). The appropriate tissue for analysis is determined by 

the focus of the study, as tissues differ greatly in terms of rates of synthesis and turnover 

(Tieszen et al., 1983; Sponheimer et al., 2006b), and thus reflect dietary integration over 

vastly different time periods. Periods of dietary integration reflected in tissues range from less 

than a day in the case of hair (West et al., 2004), to years or even decades, in the case of bone 

(Chisholm et al., 1982). It is therefore possible to resolve dietary shifts through time by 

analysing samples of the same tissue collected at different times, by analysing tissues with 

different turnover rates collected simultaneously, or by comparing sections of inert tissues 

such as hair (see Dalerum and Angerbjörn, 2005). 

Carbon and nitrogen isotopes have been used, either in isolation or in conjunction, in 

dietary studies of vertebrates including mammals (Angerbjörn et al., 1994; Cerling et al., 

2006; Codron and Codron, 2009), birds (Minami and Ogi, 1997; Suryan and Fischer, 2010), 

and reptiles (Vidal and Sabat, 2010; Willson et al., 2010), and in both terrestrial (Struck et al., 

2002; Urton and Hobson, 2005; Symes and Woodborne, 2009) and aquatic systems (Forero et 

al., 2002; Kurle and Worthy, 2002; Reich et al., 2007). Researchers have even used 
13

C/
12

C 

and 
15

N/
14

N ratios to successfully investigate the relative contributions of marine foods to the 

diets of terrestrial animals (e.g., Darimont and Reimchen, 2002; Stapp and Polis, 2003; Ben-

David et al., 2004). Stable isotope analysis might therefore be used, either in isolation or as a 

source of complimentary data to direct behavioural observations in studies of marine foraging 

by primates. This technique would be particularly useful at study sites where direct 

observation of primate feeding behaviour is difficult (Sandberg et al., 2012). One such site is 

South Africa’s Cape Peninsula, where  large parts of the landscape are covered by dense 

evergreen shrubland (Rebelo et al., 2006). 
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Cape Peninsula baboons 

The Peninsula is home to a population of approximately 500 chacma baboons (Papio ursinus) 

comprising 16 troops (Beamish unpublished data), that are geographically isolated from 

troops in neighbouring populations by urban sprawl (Hoffman and O’Riain, 2012a). The 

Peninsula baboons are currently excluded from relatively productive low-lying lands by 

human activities (Hoffman and O’Riain, 2012b), and are therefore restricted to oligotrophic 

high-lying habitats (Cowling et al., 1996). In light of this, wild-foraging Peninsula baboons 

are thought to be nutrient-stressed, particularly during the hot, dry summer months (Van 

Doorn et al., 2010). It is therefore not surprising that Peninsula baboons risk serious injury 

and even death in attempting to access  anthropogenic food items on farms, in private 

residences and at waste disposal sites (Van Doorn et al., 2010; Kaplan et al., 2011).  For 

troops that do not have access to such foods the nutrient-rich marine foods may provide 

succour during seasonal bottlenecks in food resources. 

All of the 16 extant Peninsula troops have unobstructed access to coastal areas, but 

only seven occupy home ranges that extend to the coast (Hoffman and O’Riain, 2012), and 

are therefore likely to exploit marine resources.  While foraging in the intertidal zone, 

Peninsula baboons are known to consume mussels (Mytilus sp.), limpets (Patella sp.), and the 

eggs of small shark species (likely either Poroderma sp. or Haploblepharus pictus) (Hall, 

1962, 1963; Davidge, 1978; Peschak, 2005).  In addition the remains of both crabs 

(Cyclograpsus punctatus and Plagusia chabrus), and sea lice (Isopoda) have been found in 

the faeces of these baboons (Hall, 1962, 1963). 

Despite the novelty of marine foraging, and its potential impacts on the foraging 

ecology of Peninsula baboons, limited effort has been made to quantify the use of this novel 

food with most studies to date including only qualitative descriptions of feeding behaviour 

(Hall, 1962, 1963; DeVore and Hall, 1965). Hall (1963) stated that marine foraging occurred 

“almost daily when wind and tide allow… easy access to intertidal rock pools and to the sea 

verge” and that baboons on the shore “would rush away on the approach of a large wave.” 

Hall did not however quantify the behaviour, or the potential limiting effects of wind, tidal 

cycles or wave action on the frequency of this behaviour. The most detailed dietary study of a 

marine foraging troop conducted to date showed that the study troop spent little time feeding 

on marine foods during austral autumn and winter months (mean % feeding time during 

months from March–August = 1.8 ± 1.5%), and even less time during spring and summer 

months (mean % feeding time during months from September–February = 0.8 ± 1.5%; 

Davidge, 1978). Considering that marine foraging might be limited to periods either side of 
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low tide (Hall, 1962), it seems highly plausible that Davidge (1978) might have 

underestimated time spent marine foraging as her results were based on limited behavioural 

observations (range of observation time per month: 12–74 h). 

Further research on this aspect of Peninsula baboons’ dietary ecology is therefore 

needed to corroborate or refute Davidge’s conclusions and to determine which environmental 

factors, if any, might be limiting the baboons’ exploitation of marine resources. Limited 

visibility in the dense shrubland which dominates the Peninsula’s untransformed habitats 

(Cowling et al., 1996; Rebelo et al., 2006), necessitates the use of an alternative data 

collection method complimentary to behavioural observation. The use of stable isotope 

analysis as a source of complimentary data might therefore enhance a behaviour-based study 

of marine foraging in Peninsula baboons (Sandberg et al., 2012). 

 

Aims and objectives 

The principal aim of this research is to provide a detailed account of marine foraging, and the 

abiotic and biotic factors that influence this behaviour, in Cape Peninsula chacma baboons. 

Due to the confounding effects that the ingestion of human foods have on baboon behaviour 

(Bronikowski and Altmann, 1996) and overall diet (Van Doorn et al., 2010), such research 

requires a free-ranging troop that marine forages but has no access to anthropogenic foods.  

At the outset of this study (and to the present day) only the Kanonkop troop, in the Cape of 

Good Hope section of the Table Mountain National Park, satisfied these criteria (Hoffman 

and O’Riain, 2012; O’Riain pers. comm.) thus limiting this study to a single free-ranging 

troop. Working within this limitation I attempt to address the following questions: 

1. How do ranging patterns and activity budgets of a non-raiding, marine foraging troop 

of baboons vary seasonally and how do they compare with other baboon troops, both 

on the Peninsula and elsewhere? 

2. How much time do natural-foraging Peninsula baboons allocate to exploiting marine 

foods, and does this vary seasonally? 

3. Do stable isotope signals of hair and faeces reflect proportional contributions of 

terrestrial and marine foods to the diet of non-raiding Peninsula baboons? 

4. If the extent of marine foraging is reflected in the isotope ratios of hair (see above), 

could isotope analysis of hair be used to determine whether or not an unknown 

baboon exploits marine foods? 

5. How frequent are marine foraging bouts, and what environmental factors influence 

the frequency and intensity of exploitation? 
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Thesis outline 

The thesis is divided into five chapters including this introductory chapter. Chapters 2 

through 4 include short introductions that are specific to the subject matter therein. These 

introductions provide sufficient context to allow readers to comprehend the rationale and 

relevance of the chapters if these are read in isolation (without excessive overlap with the 

introductory chapter). In Chapter 2, I provide a detailed description of the activity budgets 

and ranging patterns of the study troop, as well as an account of the troop members’ diet, and 

temporal and spatial variation in baboon food quality. In Chapter 3 I illustrate the utility of 

stable isotope analyses in the study of primates that exploit marine foods by comparing the 

results of isotope-based models of diet to the results obtained through behavioural 

observation. I then describe how baboons utilise marine food resources (in terms of frequency 

and intensity) and provide a numerical evaluation of environmental factors that affect the 

behaviour in Chapter 4. Finally, in Chapter 5, I synthesise the findings presented in Chapters 

2 through 4, and comment on the broader significance of these findings. 

 

Study site 

Landscape and climate 

The Cape Peninsula is a narrow strip of land that juts into the Atlantic Ocean on the south-

western corner of South Africa ( 

Fig. 1.1). The highest point on the Peninsula is Maclear’s Beacon on Table Mountain 

(1086.7m above sea level), which is found near the northern end of the Peninsula Mountain 

Chain (Cowling et al., 1996). South of Table Mountain, a sandstone plateau and several 

smaller peaks and ridges complete the Chain, which runs in a roughly north-south orientation 

(Cowling et al., 1996). On the eastern and western margins, the edges of the plateau are 

marked by precipitous cliffs of bare rock, some of which are over 300m high (King, 1983). 

With the exception of a few smaller peaks (less than 700m above sea-level), the altitude of 

the Peninsula decreases steadily south of the main plateau. The topography of the southern-

most reaches of the Peninsula is dominated by a second plateau approximately 150m above 

sea level (Cowling et al., 1996). 

As is typical of sandstone-derived soils in the region, the soils of the Peninsula are 

generally shallow, sandy, acidic and extremely nutrient-poor (Kruger, 1979; Schloms et al., 

1983). The exceptions to this rule are the soils of the Peninsula’s colluvial slopes that are 

deeper, less  acidic and  rich  in nutrients  by comparison  (Cowling et al., 1996).  Soils on the  
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Fig. 1.1. Map of South Africa (inset) with the location of the Cape Peninsula indicated by the 

black rectangle. The main map shows the Cape Peninsula with locations of Peninsula baboon 

troops’ home ranges marked either by a polygon (troops studied by Hoffman and O’Riain, 2012a) 

or a black baboon silhouette (troops for which home range size is currently unknown). The main 

map was adapted from Hoffman and O’Riain, (2012a) and was used with the first author’s 

permission. KK = Kanonkop. 

N 

2000 m 
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higher peaks and ridges are well-drained, but poor drainage on the plateaus results in 

saturation in these areas following heavy rains (Cowling et al., 1996). 

The topography of the Peninsula has major effects on the distribution of rainfall in the 

area, as high-lying topographic features trap rain-bearing winds (Kruger, 1979; Cowling et 

al., 1996). The resultant orographic rain causes annual rainfall to exceed 2000 mm.y
-1

 on 

parts of Table Mountain, while rainfall on the southern Peninsula may be as low as 400 

mm.y
-1 

(Cowling et al., 1996; South African Weather Service, unpublished data). 

Approximately 40% of annual rainfall occurs during the winter months (June – August), 

while just 10% occurs in summer (December – February; Kruger 1979). These seasonal 

differences in rainfall are linked to shifts in the prevailing winds, which buffet the Peninsula 

from the north-west in winter (often bearing rain) and from the southeast in the summer 

(Cowling et al., 1996). These winds frequently exceed gale force, with mean wind speeds 

exceeding 30 km.h
-1

 and 40 km.h
-1

 in winter and summer respectively at Cape Point (the 

windiest place on the Peninsula; Cowling et al. 1996). 

Unlike rainfall and wind speed, air temperature does not exhibit marked spatial or 

temporal variation across the Peninsula (Cowling et al., 1996). During the five years 

preceding this study (2004 – 2008), mean monthly maximum and minimum temperatures 

measured at the Molteno Reservoir on Table Mountain averaged 22.5°C and 14.8°C 

respectively (South African Weather Service, unpublished data). Over the same period, mean 

monthly maxima and minima measured at Cape Point averaged 19.6°C and 13.4°C 

respectively (South African Weather Service, unpublished data). These mild temperatures, 

and the large percentage of annual rainfall that falls in winter, are the defining features of the 

Peninsula’s temperate, Mediterranean-type climate. 

 

Plant diversity and ecology 

The dominant vegetation on the Cape Peninsula is an evergreen shrubland, known as fynbos 

(derived from the Dutch term for “fine bush”; Cowling et al., 1996; Rebelo et al., 2006). This 

vegetation type, is restricted to South Africa’s Cape Floristic Region (CFR), and is known for 

its remarkable taxonomic diversity—there are 2250 plant species on the Cape Peninsula alone 

(Goldblatt and Manning, 2002). Many of these species belong to the three main plant groups 

which characterise fynbos, namely restios (Restionaceae), ericoid shrubs (belonging to 

several families including Ericaceae and Asteraceae) and proteoid shrubs (Proteaceae; Rebelo 

et al. 2006). Thus, fynbos exhibits high taxonomic diversity, but low structural and functional 
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diversity, as the majority of fynbos plants are either graminoid forms or shrubs (Kruger, 

1979; Stock and Allsopp, 1992).  

The dominance of small- to medium-sized plants in fynbos communities, such as 

those on the Peninsula, results in there being little above-ground standing phytomass (< 4 

kg.m
-2

; Stock and Allsopp, 1992). This phytomass typically persists over multiple years 

between disturbances, but accumulates slowly, as net primary production rates in fynbos are 

low (100 – 400 g.m
-1

.y
-1

; Kruger, 1977). The major limiting factor for primary production is 

nutrient availability in the region’s sandstone-derived soils (Rebelo et al., 2006), which are 

generally extremely low in phosphorous and nitrogen (Kruger, 1979). Nutrient scarcity is 

therefore an important driver of ecological processes in these habitats. 

Another major driver of ecological processes in fynbos is fire (Rebelo et al., 2006). 

Fires initiate successional changes in fynbos communities (Stock and Allsopp, 1992) and are 

followed by short-term nutrient flushes (Brown and Mitchell, 1986; Stock and Lewis, 1986; 

Musil and Midgley, 1990), and, consequently, periods during which primary production rates 

increase (Kruger, 1977). These events are relatively infrequent however, as inter-fire intervals 

range from 5 to 50 years (Rebelo et al., 2006). Thus, nutrient cycling in fynbos is slow, as the 

meagre nutrients in the soil that are taken up by plants typically remain trapped in persistent 

plant tissues (such as sclerophyllous leaves) for several decades (Stock and Allsopp, 1992). 

Many fynbos species have adapted to take advantage of favourable post-fire 

conditions through traits such as serotiny (retention of seeds in protective structures and 

subsequent release following fire) and myrmecochory (dispersal of seeds by ants into 

underground nests; Le Maitre and Midgley, 1992). Plants that exhibit these traits produce 

structures that are energetically expensive, but require small amounts of soil-derived 

nutrients: fireproof seed heads in the case of the former, and elaiosomes (also known as ant-

fruits), in the case of the latter (Le Maitre and Midgley, 1992; Rebelo et al., 2006). In both 

cases, nutrient-rich seeds are protected from predators while conditions remain unfavourable, 

and then germinate in a favourable post-fire environment (Rebelo et al., 2006). 

Another trait which is common in fynbos plants is sclerophylly—the production of 

nutrient-poor fibre-rich leaves, often with high concentrations of phenolic compounds (Stock 

and Allsopp, 1992; Coetzee et al., 1997; Rebelo et al., 2006). Phenolic compounds, such as 

tannins, reduce digestibility of plant tissues (Waterman et al., 1980; Griffiths, 1986), so 

nutrient-uptake from tissues that are rich in these compounds is limited. The nutritive value 

of fynbos plants to generalist browsers and grazers is therefore extremely low (Campbell, 

1986; Coetzee et al., 1997). 
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Fynbos covers the majority of the Peninsula, but there are also small patches of 

Peninsula Shale Renosterveld, Southern Afrotemperate Forest, Cape Flats Dune Strandveld 

and Cape Seashore vegetation (for a detailed description see Mucina and Rutherford 2006). 

These communities grow on more nutrient-rich soils, and enhance the structural and 

functional diversity of the Peninsula’s plant communities, as they are home to true grasses, 

low-growing succulents and trees (Mucina and Geldenhuys, 2006; Mucina et al., 2006; 

Rebelo et al., 2006). In terms of areas occupied by baboons, the most important of the above-

mentioned communities is Cape Flats Dune Strandveld (Hoffman and O’Riain, 2012a). This 

community, which is typically found close to the coast, differs from neighbouring fynbos 

communities in a number of important ways: it is based on more nutrient-rich substrates than 

fynbos communities; fires are less frequent, and do not play the same important role in 

driving ecological processes; and different plant groups dominate—plants belonging to the 

Proteaceae are absent, Ericaceae is poorly represented and both true grasses and annual herbs 

are abundant (Rebelo et al., 2006). 

 

Animal diversity and ecology 

Historically, a variety of large mammalian herbivores and carnivores inhabited the Peninsula 

and surrounds (Skead, 1980). Resident carnivores included lion and leopard, but these were 

extirpated in the eighteenth and nineteenth centuries respectively (Skead, 1980). The largest 

terrestrial mammalian carnivore that is still found on the Peninsula is the caracal (Caracal 

caracal; Hey, 1994; Ward et al., 2010). Thus, there are presently no mammalian carnivores 

on the Peninsula which would be likely to predate on baboons (Cowlishaw, 1994). 

Eland (Taurotragus oryx), Cape mountain zebra (Equus zebra zebra), and bontebok 

(Damaliscus pygargus) were reintroduced in the Cape of Good Hope (CoGH) section of the 

Table Mountain National Park (TMNP), and remain restricted to this part of the Peninsula 

(Davidge, 1976; Davison and Marshak, 2012). These large herbivores are able to survive in 

fynbos-type habitats, but tend to suffer from deficiencies of trace elements such as copper 

(Zumpt and Heine, 1978). Resident medium-sized and small mammalian herbivores are grey 

rhebuck (Pelea capreolus), grysbok (Raphicerus melanotis), steenbok (Raphicerus 

campestris), klipspringer (Oreotragus oreotragus) and Cape hyrax (Procavia capensis; Hey, 

1994; Cowling et al., 1996). These smaller herbivores typically feed selectively on nutrient-

rich plant parts in order to fulfil their nutritional requirements (Campbell, 1986). 

Rodent species that are found on the Peninsula include the Cape porcupine (Hystrix 

africaeaustralis), the Cape dune mole rat (Bathyergus suillus) and a variety of murids, three 
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of which are exotic (Davidge, 1976; Hey, 1994). Murids are known to play important 

ecological roles in fynbos habitats, as pollinators (Letten and Midgley, 2009) and seed 

predators (Bond, 1984), while bathyergids contribute to soil disturbance and turnover 

(biopedturbation; Davies and Jarvis, 1986) and feed extensively on underground storage 

organs of geophytes (Lovegrove and Jarvis, 1986). 

There are 155 bird species that are known to breed regularly on the Peninsula (Picker 

and Samways, 1996). These species are not all found throughout the Peninsula however, as 

bird community composition varies with habitat type (across both natural and transformed 

habitats; Winterbottom, 1966; Cody, 1983; Fraser, 1990). In fynbos habitats, the bird 

communities are seasonally dominated by the Cape Sugarbird (Promerops cafer) and two 

sunbird species (Nectarinidae), all of which are nectarivores (Cowling et al., 1996). These 

birds are important pollinators for certain fynbos plant groups, including Proteaceae and 

Ericaceae (Rebelo, 1987). At the marine–terrestrial interface, bird communities include larger 

seabird species such gulls (Larus spp.), terns (Sterna spp.), and the African black 

oystercatcher (Haematopus moquini), as well as smaller migrant waders (Skead, 1966; 

Pringle and Cooper, 1977; Williams et al., 1990). The Cape kelp gull (Larus vetula) and H. 

moquini are both major predators of marine invertebrates including mussels and, in the case 

of H. moquini, limpets (Siegfried, 1977; Hockey and Underhill, 1984; Griffiths and Hockey, 

1987). 

With 48 resident species, including various  snakes and lizards, and two terrestrial 

tortoise species, reptiles are well-represented in the Peninsula fauna (Wright, 1988; Hey, 

1994; Branch, 1998). The 18 resident amphibian species, three of which are endemic to the 

south-western Cape, thus make up the smaller component of the Peninsula’s herpetological 

diversity (Baard, 1989; Picker and Samways, 1996; Channing, 2001). Both reptiles and 

amphibians occur in, but are not restricted to, the Peninsula’s fynbos habitats (Fraser and 

McMahom, 1994; Branch, 1998; Channing, 2001). 

The invertebrate fauna of the Peninsula is diverse and certain groups display 

remarkably high endemism (Cowling et al., 1996; Picker and Samways, 1996; Sharratt et al., 

2000). Indigenous invertebrates are found in both natural and transformed habitats, but 

invertebrate communities in natural habitats are generally more diverse (Ratsirarson et al., 

2002; Pryke and Samways, 2009). In these habitats, resident insects play important ecological 

roles, pollinating flowers, and dispersing seeds, of a wide variety of indigenous plants 

(Johnson, 1992; Cowling et al., 1994; Johnson and Bond, 1994; Johnson and Steiner, 1997). 

Some of the above-mentioned invertebrates comprise part of a larger group of Peninsula 
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plants and animals, which are currently threatened with extinction, as a result of destruction 

or modification of natural habitats by humans (Baard, 1989; Cowling et al., 1996; Holmes et 

al., 2012). Habitats in low-lying areas (particularly in the north) have been transformed into 

residential gardens, agricultural land (mainly pine plantations and vineyards) and thickets 

dominated by invasive alien species such as Acacia spp. (Richardson et al., 1996; Rouget et 

al., 2003; Holmes et al., 2012). In 1998, in an attempt to restrict further degradation of 

Peninsula ecosystems, local government declared a little more than half of the Cape 

Peninsula (245 km
2
) part of the open-access Cape Peninsula National Park (Government 

Gazette, 1998), which would later become the TMNP. This means that indigenous flora and 

fauna in high-lying areas, and in some low-lying areas in the south, are accorded protection 

by the Protected Areas Act (2003). 
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CHAPTER 2  

 

Ranging behaviour, activity budgets and diet 

of a non-raiding troop of Cape Peninsula 

chacma baboons (Papio ursinus) 
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ABSTRACT 

The terrestrial habitats available to chacma baboons (Parpio ursinus) on the Cape Peninsula, 

are, for the most part, oligotrophic in nature. The low nutrient levels, and widespread 

presence of chemical compounds that discourage herbivory in plant tissues, are thought to 

limit the ease with which resident medium-sized to large mammals fulfil their nutritional 

requirements. Peninsula baboons are however able to access nutrient-rich tissues of marine 

invertebrates in the intertidal zone. I investigated aspects of the behaviour and diet of the last 

remaining natural-foraging Peninsula troop. I tracked the troop using GPS technology, and 

recorded behavioural data using instantaneous scan sampling. I used these data to determine 

seasonal variation in: home range (HR) area and patterns of use (modelled using two different 

approaches), activity budgets, and diet. The troop used an area of ~45 km
2
 over the course of 

the study, and travelled a little more than 6 km per day on average. HR cell use was 

positively related to slope and habitat productivity, and negatively related to distance-to-

coast, altitude and distance-to-fresh water (though this relationship was weak). A Bayesian 

spatial generalized linear mixed model (SGLMM) performed better than a generalized linear 

model (GLM) in terms of predicting frequency of cell use. Daily path length (DPL) and rate 

of travel were greater during the warm, dry summer than during the colder, wetter months. 

Feeding and walking were the dominant activities in all four seasons, but time spent engaged 

in these activities fluctuated seasonally. The diet of the troop was dominated by terrestrial 

foods of different types, with marine foods comprising only a small proportion of the diet 

across all seasons. All behavioural indicators suggest that this troop was nutrient-stressed 

relative to other Peninsula troops, and baboon troops elsewhere, but the severity of this stress 

varied through seasons.  
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INTRODUCTION 

Primates have limited time available for allocation to different activities each day (Dunbar 

and Dunbar, 1988; Hill et al., 2003) and must therefore make behavioural choices when 

unable to engage in two activities simultaneously (McFarland, 1974). Over the medium- to 

long term, these choices manifest in an individual’s activity budget, which is strongly 

influenced by food availability (Ménard and Vallet, 1997; Overdorff et al., 1997; Guo et al., 

2007; Fan et al., 2008). When food is scarce or difficult to obtain, many primates increase 

time spent engaged in activities related to acquiring food (travelling or feeding) at the 

expense of resting or social activity (e.g. Isbell and Young, 1993; Doran, 1997; Agetsuma 

and Nakagawa, 1998; Hanya, 2004 a; Stone, 2007; Zhou et al., 2007; Sayers and Norconk, 

2008). These behavioural changes are typically associated with a switch to so-called ‘fallback 

foods’ as important dietary items (Wrangham et al., 1998; Alberts et al., 2005; Grueter et al., 

2009, 2013). Fallback foods are relatively nutrient-poor (Wrangham et al., 1998; Hanya, 

2004a), or costly to consume (in terms of time or energy; Alberts et al., 2005; see Marshall et 

al., 2009 for a review), and dependence on these foods therefore forces primates to allocate 

greater amounts of time to foraging (sensu Bronikowski and Altmann, 1996). 

Many primates experience temporal fluctuations in food availability within their home 

ranges, and shortages of preferred foods are commonplace (e.g. Kurup and Kumar, 1993; 

Ménard and Vallet, 1997; Gursky, 2000; Furuichi et al., 2001). These periods of food scarcity 

may occur annually, or semi-annually, and are typically related to seasonal processes such as 

rainfall, which affects plant phenology (Tutin et al., 1997; Wrangham et al., 1998; Furuichi et 

al., 2001). One solution to the temporal shortfalls of preferred food items is to increase 

dietary breadth. The general dietary adaptability and behavioural plasticity exhibited by many 

primates suggest that they have evolved to do just that (e.g. Poulsen et al., 2001; Matsumoto-

Oda, 2002; Pavelka and Houston, 2004; Fan et al., 2008; Grueter et al., 2009, 2013; Masi et 

al., 2009; Morrogh-Bernard et al., 2009; Mekonnen et al., 2010; Chaves et al., 2011). 

Baboons (Papio spp.) display extreme dietary flexibility (Altmann and Muruthi, 1988; 

Alberts and Altmann, 2006) and are able to “adapt to different habitats, taking advantage of 

whatever staple food items the local area may offer” (DeVore and Hall, 1965). This statement 

is supported by baboons’ apparent ability to inhabit remarkably diverse habitats including 

semi-deserts (Hamilton et al., 1976; Cowlishaw, 1997), grasslands and savannahs (Stacey, 

1986), forests (Rowell, 1966; Okecha and Newton-Fisher, 2006), and seasonal floodplains 

(Busse, 1980; Engh et al., 2006). Considering differences in plant- and animal communities 
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(and thus, food availability) across the above-mentioned habitats, it is unsurprising that 

baboons exhibit remarkable inter- and intra-population dietary variation (DeVore and Hall, 

1965; Hamilton et al., 1978; Whiten et al., 1991; Byrne et al., 1993; Alberts et al., 2005). As 

might be expected (in light of the aforementioned links between diet and behaviour), baboons 

also exhibit variation in activity budgets and ranging behaviour across troops and populations 

(Post, 1981; Altmann and Muruthi, 1988; Dunbar, 1992). 

When nutrient-stressed, baboons increase time spent feeding at the expense of time 

spent resting and, in extreme circumstances, time spent engaged in social activity (Dunbar 

and Dunbar, 1988; Alberts et al., 2005). Also, troops that are more nutrient-stressed travel 

further on a daily basis, and occupy larger home ranges, than less-stressed troops in the same 

region (Whiten et al., 1987). The profound effects of changes in food availability on baboon 

behaviour and ranging patterns are abundantly clear in populations where certain troops have 

access to nutrient-rich human foods (either through provisioning or raiding). At two different 

study sites in Kenya, members of semi-provisioned baboon troops spent less time feeding, 

and more time resting, than non-provisioned animals (Altmann and Muruthi, 1988; Strum, 

2010). On the Cape Peninsula, South Africa, troops with access to human-derived foods 

occupied much smaller home ranges and, for the most part, travelled shorter distances on a 

daily basis, than those without (Hoffman and O’Riain, 2012a). 

While exploitation of human foods is common in baboons (Altmann and Muruthi, 

1988; Naughton-Treves et al., 1998; Hill, 2000; Strum, 2010), inclusion of marine foods in 

baboon diet has been documented in only two populations: the chacma baboons (Papio 

ursinus) of the Cape Peninsula (Hall, 1962, 1963; Davidge, 1978) and yellow baboons (Papio 

ursinus) of coastal, southern Somalia (Messeri, 1978). The tissues of intertidal marine 

organisms are typically rich in macronutrients (Karakoltsidis et al., 1995; Fleurence, 1999; 

Smith and Partridge, 2004), unlike the tissues of many plants in the Peninsula’s relatively 

unproductive terrestrial habitats (Kruger, 1977). Marine foods might therefore represent 

important alternatives to largely nutrient-poor terrestrial foods for Peninsula baboons. It has 

however been stated that tides, waves and wind affect the ease with which these foods may 

be exploited (Hall, 1963). 

To date, no comprehensive study on the relative importance of terrestrial and marine 

foods to Peninsula baboons has been conducted. Given that nutritional rewards may vary 

annually in both marine- (Van Erkom Schurink and Griffiths, 1991), and terrestrial habitats 

(Pierce, 1984; Van Doorn et al., 2010) baboons are predicted to vary their use of these two 
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broad habitat types. Use of the two habitats types should also vary with conditions in the 

intertidal zone, which change over much shorter time scales (Palmer, 1995). 

 

Aims and predictions 

The main aim of this chapter is to provide a detailed account of the ranging patterns, activity 

budgets and diet, of the only troop of baboons on the Cape Peninsula that does not currently 

consume human-derived foods but has access to marine intertidal organisms.  More 

specifically I aim to quantify the seasonal variation in home range (HR) size, daily path 

length (DPL), rate of travel, activity budgets and diet composition (in terms of broad food 

categories). The final aim is to determine which factors affect intensity of HR cell use, using 

two different approaches to modelling spatially-structured data. Based on trends observed 

elsewhere and fundamental theories of behavioural ecology I predict that: 

1. HR size will be greatest, and DPL longest, during the season when food availability is 

lowest. 

2. The study troop will favour those habitats that are most productive and offer the 

highest quality food items. 

3. During the season(s) when the baboons experience food shortages, they will allocate 

greater amounts of time to foraging behaviour (sensu Bronikowski and Altmann, 

1996). 

4. The baboons of the study troop will favour foods that are richest in protein, and will 

adjust their seasonal diet composition in order to maximise intake of said foods. 

 

METHODS 

See Chapter 1 for a detailed description of the study site. 

Study animals 

The study troop for this research was the Kanonkop troop (KK), which is the only  troop on 

the Peninsula that does not feed on either human foods or agricultural produce (Hoffman and 

O’Riain, 2012 a; this study). The troop’s documented home range encompasses 

approximately 37.7 km
2
 in the northern part of the CoGH section of the TMNP, and allows 

them unlimited access to the Peninsula’s east and west coasts (Hoffman and O’Riain, 2012a). 

Due to the size of the troop and the large area over which they typically spread, the difficulty 

implicit in counting baboons in fynbos and the restrictions of my research permit, I was only 
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able to obtain two counts during the course of the study. In March 2010 (when I obtained a 

count that I believe included the entire troop), KK troop numbered 56 baboons, with an adult 

sex ratio (M:F) of 1:3.4. 

 

Permit conditions 

In light of KK troop’s status as the last remaining non-raiding troop on the Peninsula, South 

African National Parks (SANParks) Scientific Services staff expressed concern regarding the 

potential effects of research on the behaviour of the troop. Ultimately, the permit was granted 

on condition that the research minimise human contact with the troop and hence the 

probability of habituation to tourists.  Thus, it was stipulated that my assistants and I could 

spend only four months following the troop over the course of a year (one month in each 

season) to collect behavioural data, and that we were not allowed to habituate the troop to 

close (< 20m) human presence. I was later granted permission to collect data over a fifth 

short period in winter of a second year because minor technical difficulties had affected data 

collection during the first winter session. Due to the limitations on time spent with the troop, 

and stipulations regarding the minimum distance from which we could observe the animals 

(≥ 20 m), we were not able to compile identikits of individuals for the troop and hence collect 

focal data. 

 

Data collection 

With the help of volunteer 

field assistants (three per 

fieldwork session), I 

collected behavioural data 

on 136 days during five 

discrete fieldwork sessions 

spread across all four 

seasons between May 2009 

and June 2010 (see Fig. 2.1; 

Kruger, 1979). During each 

of the first four fieldwork 

sessions (June and 

September 2009, and 

 

Fig. 2.1. Numbers of full- and part days (according to criteria 

used in analyses of ranging behaviour) on which data were 

collected during each fieldwork session. Win = winter, Spr = 

spring, Sum = summer, Aut = autumn, 09 = 2009, 10 = 2010. 
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January and March 2010) we attempted to collect data on 30 consecutive days within the 

calendar month (Fig. 2.1) in order to account for fluctuations in tide height through lunar 

cycles (Palmer, 1995). On each data collection day, we worked in pairs to improve our 

chances of maintaining contact with the troop, and to increase efficiency of data collection 

and reliability of data that were collected. A rotational roster was set up during each 

fieldwork session such that each observer spent equal time in the field with each other 

observer, and that I (M. Lewis) worked one shift with each assistant every four days. During 

each of these shifts I cross-checked the assistant’s categorisation of habitat types and 

behaviour with my own as we conducted scans. These measures were taken to ensure 

continuity between myself and field assistants and hence to reduce the possible effects of 

observer bias. 

 We collected behavioural- and ranging data while following the troop on foot at a 

distance of 20 metres. This was possible because the troop had been habituated to human 

presence at this distance for a previous short-term spatial ecology study (Hoffman and 

O’Riain, 2012a). Whenever possible, we followed the troop from morning sleeping site to 

evening sleeping site. We were not able to follow the baboons from sunrise to sunset due to 

the Park’s rules regarding use of roads (only during daylight hours). Time spent travelling to 

and from sleeping sites each morning and evening varied with site, and ranged from 10 to 40 

minutes. We therefore strove to find the baboons before they left their sleeping site, and to 

follow them until they had arrived at their evening sleeping site, each day. On many 

occasions this was not possible however, either because the troop had left their sleeping site 

before we established visual contact (20.6% of days, n = 136), or because we had to leave the 

troop prior to arrival at a sleeping site (61.8% of days, n = 136).  We were however able to 

determine (without doubt) which sleeping site the troop slept at on the majority of days 

(90.4% of days, n = 136). I considered the use of a sleeping site to be beyond doubt if we 

followed the troop to within 100 m of the sleeping site in the evening, or if we established 

visual contact while the troop was within 100 m of the sleeping site in the morning. I used 

100 m as the threshold value because this was the average distance travelled during inter-scan 

intervals (rounded off to the nearest 10 m) during the study. If the troop split up into foraging 

groups during the course of follows we tracked the larger group (based on numbers of visible 

individuals) until the groups remerged. This was a relatively rare occurrence, and we were 

not biased to a particular group of animals, so it seems unlikely that we would have over- or 

under-sampled any particular subgroup of the troop. 
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Spatial data 

For the analysis of ranging behaviour, we recorded the geographic coordinates of the 

estimated centre of the troop in degrees and minutes every ten minutes. When we could not 

move to the estimated centre of the troop at the appointed time without disturbing the 

baboons, we waited until they had moved away before walking to the appropriate location 

and recording the coordinates. We determined these coordinates using a Garmin
®

 e-Trex 

hand-held GPS unit, and recorded them using a CyberTracker
®

 Screen sequence uploaded to 

a Fujitsu Siemens
®

 Pocket LOOX N500 pocket-PC. We only recorded the coordinates when 

the GPS unit registered accuracy of 10 m or less. 

I added a number of coordinates retrospectively on days when we could not follow the 

troop from sleeping site to sleeping site, and the points could be inferred with a high degree 

of confidence. Thus, I added points when we encountered the troop near, but not at, a 

sleeping site and I could reliably infer which sleeping site had been used (in the mornings), or 

when we left the troop prior to sunset but identified which sleeping site would be used (in the 

evenings; see above). When this was the case, I assumed that the troop had taken the most 

direct route to or from the sleeping site in question and added one point in each grid cell 

along this route (see below). 

 For the purposes of analysing ranging patterns, it was necessary to define “full days” 

as opposed to “part days”. I defined full days as days on which we recorded, or were able to 

infer (see above), points that constituted the path from morning sleeping site to evening 

sleeping site. If we lost the troop during the course of the day, but re-established visual 

contact within 60 minutes, I still considered that day to be a full day. I defined part days as 

those on which we could not determine either the morning or evening sleeping site, or both, 

or we lost contact with the troop for longer than 60 minutes during the course of the day. 

 

Ranging patterns 

I converted the GPS coordinates from degrees and minutes to decimal degrees using the 

formula: 

60

M
DDd    

where Dd is latitude or longitude in decimal degrees, and D and M are the degrees and 

minutes for the same values. Because all of the coordinate points were situated south of the 

equator I multiplied the values obtained for latitude by –1. I rounded off all values in decimal 
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degrees to nine decimal places, and then imported the points into Arcview 3.3 (ESRI 2002) 

and projected them in Transverse Mercator, spheroid WGS 84, central meridian 19. 

I used the Repeating_shapes (repeat_shapes.avx) extension to Arcview 3.x (Jenness, 

2005) to superimpose a grid of 0.0225 km
2
 cells (150  150 m) on the points recorded 

(following Hoffman and O’Riain, 2011). The grid was clipped at the Peninsula’s east and 

west coasts such that the area covered did not extend into the sea. I then estimated seasonal 

home ranges (and the home range used over the entire year) based on the baboons’ use of 

cells within the abovementioned grid. For the purposes of home range estimation and home 

range use analysis, I included only a single point at each morning- and evening sleeping site 

on full days (i.e., the last point recorded prior to departure from the sleeping site in the 

morning, or the first point recorded following arrival at the sleeping site in the evening). I 

defined “used cells” as cells that contained at least one GPS point, or through which the 

baboons had travelled (based on paths between consecutive points). When estimating home 

ranges, I included used cells; cells that were bounded on any three sides, or on two opposite 

sides, by used cells; cells that were bounded on all sides by used cells and the coast; and cells 

in areas that were completely enclosed by the aforementioned cells. The cell accumulation 

curve for the home range estimated in this way reached a plateau after 19 weeks of data 

collection (no new cells were added to the home range beyond this point in time; Fig. 2.2). 

I considered the grid cell accumulation method of home range estimation to be more 

appropriate than, for example, kernel density estimates or the local convex hull approach, for 

several reasons. As mentioned by Hoffman and O’Riain (2012a), this approach allows for 

analysis of the data at a scale that is appropriate, given spatial variation in habitats on the 

Peninsula, and the wide troop spread exhibited by Peninsula baboon troops (Hoffman and 

O’Riain, 2011). Also, implementation of this method allows for a straightforward comparison 

with the results reported by Hoffman and O’Riain (2011, 2012a). 

I used Arcview 3.3 (ESRI 2002) to calculate the troop’s DPL and rates of travel. I 

calculated the distances between consecutive points using the Nearest_features (nearfeat.avx) 

extension in Arcview 3.x (Jenness, 2004), and then manipulated these as required. To 

determine DPL, I summed all distances travelled between consecutive points on a given day. 

I multiplied distances travelled during inter-scan intervals by six to calculate hourly rates of 

travel. For analysis of rates of travel I used only distances travelled during inter-scan intervals 

by six to calculate hourly rates of travel. For analysis of rates of travel I used only distances 

travelled between recorded points (as opposed to inferred points). Only data collected on full 
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days (according to the ranging 

criteria; n = 121) were used for 

analyses of DPL and rates of travel.  

  

Behavioural data  

While following the troop, we 

collected general behavioural data 

by means of instantaneous scans 

(Altmann, 1974), recorded every ten 

minutes, starting on the hour. 

Whenever possible, one observer 

watched the baboons and called out 

observations, and the other recorded these data using the same CyberTracker
®

 Screen 

sequence that was used to record GPS coordinates. In this way, the caller could carry out the 

scan without losing visual contact with the troop and thus reduce his/her chances of including 

the same individual in the scan twice. We conducted scans from the estimated centre of the 

troop whenever possible. This was not possible when the baboons moved rapidly through 

dense vegetation. When this occurred we recorded observations from a position directly 

behind the estimated centre of the troop relative to the troop’s direction of movement. For 

each scan we included all individuals that were visible within three minutes of the 

commencement of the scan. Using binoculars, we identified each baboon to sex and age-class 

where possible, and recorded its behaviour. If a baboon of a certain sex and age-class that had 

already been included in a given scan moved out of sight, animals of the same sex and age-

class that later became visible (i.e. they were not visible at the beginning of the scan) were 

not included in the scan. This further reduced the probability of pseudoreplication within 

scans. 

 The four behavioural activities that we recorded were feeding, moving, socialising 

and resting (see Dunbar, 1992 for definitions), as these activities are known to constitute 

more than 95% of baboons’ time budgets (Dunbar, 1992). Feeding was further divided into 

feeding while stationary and “walk-feeding”. We included the latter category because the 

baboons of this troop often picked up and consumed small food items while walking. When 

this was done the food items were consumed whole and we were invariably not able to 

identify the items ingested. When baboons were feeding while stationary, we were more 

successful at identifying the food item being consumed and classified it as far as possible. 

 
Fig. 2.2. Cumulative frequency of number of cells 

included in KK troop’s estimated home range following 

each week (seven day period) of data collection. 
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Foods were classified as terrestrial or marine, then plant or animal, then (if terrestrial) 

subterranean or above-ground. Where possible, the anatomical structure (e.g. bulb, flower or 

stem) consumed by the baboons was determined, and the plant from which food was obtained 

was identified to genus-level. 

 

Food samples 

If we observed baboons feeding on a given food more than twice in any season, we collected 

three to five samples of this food item for macro-nutrient- and stable isotope analysis (see 

Chapter 3). We collected samples of the different foods from various parts of the troop’s 

home range (i.e. marine foods were collected from both coasts) to avoid biasing our results to 

a single location. In the case of terrestrial foods, we collected only the structure(s) from 

which the baboons derived their food (e.g. flower, seed or leaf). Following collection we 

placed these samples in paper bags, and suspended them in a well-ventilated area in order to 

initiate air-drying of the samples, and to prevent rotting. We collected entire marine 

organisms that were known foods and placed them in zip-seal plastic bags, which we placed 

in a –20°C freezer on the day of collection. The marine food samples were stored in a –20°C 

freezer until they were processed as described below. All samples were collected over the 

course of a single day in the final week of the month during which behavioural data were 

collected. 

In the laboratory, I processed both terrestrial and marine samples, such that only those 

tissues which were ingested by the baboons were included in the samples for analysis 

(following Rothman et al., 2008). Having removed extraneous tissue, I shredded desiccation-

resistant plant tissues, such as Leucodendron spp. seeds and Carpobrotus sp. leaves, using a 

commercial blender (Waring ®, Stamford, USA). I dried plant samples in a drying oven at 

60°C and freeze-dried marine samples at –80°C, and then ground each sample to a 

homogeneous powder using a Wiley Mill Standard Model No. 3 (Arthur H. Thomas Co., 

Philadelphia, USA) and a custom-built hammer mill (United Scientific Pty. Ltd., Western 

Cape, South Africa). The samples prepared in this way were then analysed following 

methods recommended by Ortmann et al. (2006) to determine percentage nitrogen (using the 

Kjeldahl procedure) and percentage soluble protein (Biorad). The samples were also analysed 

to determine whether or not polyphenolics and alkaloids were present (following Bate-Smith, 

1975 and Cromwell, 1955). Dragendorff’s-, Mayer’s- and Wagner’s reagents (Cromwell, 

1955) were used to test for the presence of alkaloids. 
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Statistical analyses 

Home range use 

I used the grid cells within the troop’s home range as sampling units for investigation of 

factors affecting intensity of use of different parts of the home range. Not all cells were 

uniform in terms of area because cells along the coast were clipped (see above), and were 

therefore smaller than inland cells. To control for differences in cell size, and thus area 

available for use by the baboons, I adjusted the number of GPS points in each cell. I did so 

using the formula: 

𝐴𝑑𝑗𝑖 = 𝑂𝑏𝑠𝑖/𝐴𝑟𝑒𝑎𝑖 × 0.0225 

where Adji is the adjusted value for cell i (rounded to the nearest unit), Obsi is the recorded 

number of GPS points in cell i and Areai is the area (in km
2
) of cell i. 

Following Hoffman and O’Riain (2011, 2012 b) I quantified geographical and 

biological properties of each cell (n = 2058). I calculated average altitude (m) and average 

slope (°) in each cell in Arcview 3.3 (ESRI 2002) using a 10 m digital elevation model 

(DEM; City of Cape Town, 2008. CMA 10 m DEM, City Maps, City of Cape Town; Fig. 

2.3A and B). I calculated the distances from each cell to the nearest perennial source of fresh 

surface water and to the nearer coast, in Arcview 3.3 (ESRI 2000) using the Nearest_features 

(nearfeat.avx) extension to Arcview (Jenness, 2004). The former was calculated using an 

edited version of a shapefile provided by SANParks (glcrveg; South African National Parks, 

unpublished data); I added two small water bodies (surface area < 0.001 km
2
), which I 

observed in the troop’s home range (and which contained water during all four seasons), to 

the shapefile (Fig. 2.3D). Finally, I determined the dominant habitat type in each cell (by 

percentage area), using a shape file provided by Mucina and Rutherford (2006; Fig. 2.3 C). I 

used the number of GPS points (indicating the troop’s location) in each cell as a measure of 

the intensity of use by the troop. This quantity was used as the response term in the models 

described below. 

 I tested for collinearity between predictor variables in each data set (the full data set 

and the sub-samples used for the non-spatial models) by performing Pearson correlations 

between all pairs of variables (Dormann et al., 2013). I considered two variables to be 

collinear if the absolute value of the Pearson correlation coefficient (|r|) exceeded 0.7 (as 

recommended by Dormann et al., 2013). Based on this criterion, no two pairs of variables 

within the dataset in question were collinear. I standardised all predictor variables prior to 

running the models (following Zuur et al., 2009), which meant that effect sizes were directly 

comparable. 
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Fig. 2.3. Maps of the southern-most part of the Cape Peninsula showing altitude (A), slope (B), 

locations of permanent surface water (C; water is denoted by dark blue lines) and vegetation type 

(D). The black outline indicates the size and location of KK’s home range. 
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Spatial autocorrelation 

A common assumption implicit in most statistical tests is that of independence of 

observations (Hurlbert, 1984; Zar, 1999; Zuur et al., 2009, 2010). This assumption is 

frequently violated when ecological data are collected across geographic space, as many 

ecological phenomena exhibit spatial autocorrelation (SAC; e.g., Koenig, 1998; Badgley and 

Fox, 2000; Keitt et al., 2002; Diniz-Filho et al., 2003). SAC is defined as “the property of 

random variables taking values, at pairs of locations a certain distance apart, that are more 

similar (positive autocorrelation) or less similar (negative autocorrelation) than expected for 

randomly associated pairs of observations” (Legendre, 1993). Failure to address SAC in 

analyses of geographically-structured data may be problematic, as SAC inflates Type I errors 

(i.e., false positives) and non-spatial models might produce erroneous coefficient estimates in 

this context (Dormann, 2007; Dormann et al., 2007). Models that incorporate SAC may even 

generate coefficient estimates that differ in terms of sign from those generated by non-spatial 

models (Kühn, 2007). The incidence of spatial autocorrelation does not however necessarily 

mean that coefficients generated by non-spatial models should be disregarded (Hawkins et 

al., 2007). 

SAC often arises as a result of distance-related processes such as dispersal and 

migration (Legendre, 1993; Dormann et al., 2007). Considering the spatial scale at which I 

analysed the KK troop’s home range use, and the temporal resolution of the GPS coordinate 

records, it seemed highly likely that the data might exhibit SAC (Aarts et al., 2008). Indeed, 

analysis of a similar data set in a previous study revealed significant SAC in model residuals 

(Hoffman and O’Riain, 2012b). I therefore assessed SAC in the residuals of the models 

described below with Moran’s I tests for SAC. Moran’s I is a spatially weighted measure of 

similarity across observations, that ranges from -1 to 1 in value, with zero indicating no SAC 

(Moran, 1950; Diniz-Filho et al., 2003; Dormann et al., 2007). In light of contrasting findings 

regarding the effects of SAC on model outcomes (Hawkins et al., 2007; Kühn, 2007), and 

differences in performance of different spatial models (i.e., models that account for or 

incorporate SAC; Dormann et al., 2007), I adopted two analytical approaches that differ in 

terms of how they deal with SAC and also in terms of the models used. 

The first approach involved removing spatial dependence among observations prior to 

analysis and then using non-spatial statistical tests (Legendre, 1993). This may be 

accomplished by simply removing observations from the data set until SAC is no longer 

significant (Hawkins et al., 2007). This approach is easily implemented, and allows for the 

use of non-spatial models, but entails a net loss of information, and is contingent on relatively 
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large sample sizes (Legendre, 1993; Hawkins et al., 2007). The above-mentioned loss of 

information is seen as a major drawback of this approach (Legendre, 1993), but where sample 

size allows, it remains a viable option. This is the case in the model described below, as the 

sub-sample used to fit the model included almost twice as many observations as the largest 

dataset used in a recent assessment of the effects of sample size on model performance (Wisz 

et al., 2008). 

The second approach that I adopted involved the use of models that incorporate, or at 

least account for, SAC (Legendre, 1993; Dormann et al., 2007). There are a variety of models 

in both Bayesian and frequentist frameworks, that have been designed for, or modified for, 

use in analyses of spatial data of this type (Kühn, 2007; Hughes and Haran, 2013; for a 

review of frequentist models see Dormann et al., 2007). In light of the fact that the spatial 

model accounts for SAC (Hughes and Haran, 2013), I used data from all cells within the 

troop’s home range as the input for this model. 

 

Models 

I used Generalized Linear Models (GLM;  Nelder and Wedderburn, 1972) and sparse spatial 

Generalized Linear Mixed Models (SGLMM; Hughes and Haran, 2013) to examine the 

relationships between frequency of use of cells within the troop’s home range and predictor 

variables (environmental and topographic factors). GLMs are not spatial models, and were 

used in the first approach described above. Sparse SGLMMs alleviate spatial confounding by 

incorporating the spatial structure in the data into the model (Hughes and Haran, 2013), and 

were therefore used in the second approach described above. 

GLMs are extensions of classical linear models that allow for modelling of response 

variables that follow non-normal distributions (Nelder and Wedderburn, 1972; Guisan et al., 

2002). Response variables might follow, for example, the binomial or Poisson distributions 

(Nelder and Wedderburn, 1972; McCullagh and Nelder, 1989), which are appropriate for 

modelling of 0–1 (presence–absence) and count-type response variables (under certain 

conditions), respectively (Vincent and Haworth, 1983; McCullagh and Nelder, 1989; Manel 

et al., 1999; Brotons et al., 2004; Dobson and Barnett, 2008). 

Prior to running the GLMs, I tested for over-dispersion by first calculating the 

variance-to-mean ratio of the response variable in each of the models. The variance-to-mean 

ratio of frequency of cell use was 31.6, which indicates that the data are over-dispersed 

relative to a standard Poisson distributions (Potts and Elith, 2006). I then used the “fitdist” 

and “gofstat” functions in the fitdistrplus package (Delignette-Muller et al., 2014) in R (R 
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Core Team, 2014) to determine whether or not a negative binomial distribution (Ver Hoef 

and Boveng, 2007) provides a better fit for the data better than a Poisson distribution or a 

zero-inflated Poisson (ZIP) distribution (used specifically where overdispersion has arisen as 

a result of zero-inflation; Gurmu and Trivedi, 1996; Maunder and Punt, 2004). The plots 

generated by the “fitdist” function suggest that the observed data are not zero-inflated relative 

to the negative binomial distribution (Fig. 2.4). Akaike’s Information Criterion (AIC) values 

indicate that the negative binomial distribution fits the observed data better than either a 

Poisson or ZIP distribution (AICneg. bin = 10 414.9, AICPoisson = 27 126.5, AICZIP = 23 610.5). 

I therefore ran the GLMs assuming a negative binomial distribution (Potts and Elith, 2006; 

Hilbe, 2011). I included predictor variables that have previously been shown to affect baboon 

ranging patterns and intensity of home range use in the full model (DeVore and Hall, 1965; 

Altmann and Altmann, 1970; Hoffman and O’Riain, 2011, 2012b). Thus, the full GLM used 

to examine the relationships between cell use and environmental predictor variables is 

described by the equation: 

𝑙𝑜𝑔(𝑓) = 𝛽0 + Altitude + Slope + Dist. coast + Dist. water + Vegetation type 

where log denotes the negative binomial link function, and f is the frequency of cell use (i.e., 

the number of GPS points in the cell). 

GLMMs are extensions of GLMs that allow for correlation between observations 

through inclusion of random effects (Zuur et al., 2009). The sparse SGLMM, proposed by 

Hughes and Haran (2013) is a new parameterization of the GLMM for areal data (i.e., data 

observed at the vertices of a graph; Hughes, 2014), first proposed, and applied in a Bayesian 

setting by Besag et al. (1991). Although the model proposed by Besag et al. (1991) was 

formulated for analysis of spatial data, it has since been shown that this model is in fact 

spatially confounded  (Clayton et al., 1993; Reich et al., 2006). The sparse SGLMM 

alleviates spatial confounding through inclusion of random effects that incorporate patterns 

corresponding to spatial autocorrelation (Hughes and Haran, 2013). The random effects take 

the form of eigenvectors (of the Moran operator; Moran, 1950), which represent potential 

patterns of spatial dependence in the data (Hughes and Haran, 2013). The model is 

computationally efficient because it permits inclusion of only positive eigenvalues (i.e., 

positive spatial dependence is assumed; Hughes, 2014). I ran this model assuming a Poisson 

distribution, because this is the best available approximation of the distribution of the data 

(the package does not yet allow for assumption of a negative binomial distribution). I 

included the same predictors as in the GLM described above. Thus, the first stage of the 
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SGLMM used to investigate the relationships between home range cell use and 

environmental predictor variables is described by the equation (in vectorised form): 

𝑔(𝜇) = 𝑋𝛽 + 𝑀𝛾 

where X is the design matrix (i.e., fixed effects of altitude, slope, distance-to-coast, distance-

to-water, and vegetation type). The second stage, that is the prior for γ, is described by the 

equation: 

𝑝(𝛾 |𝜏_𝑠) proportional to τ_s^(q/2)exp (−τ_s/2𝛾′𝑀′𝑄𝑀𝛾′) 

where τ_s is a smoothing parameter and Q is the graph Laplacian. As the response variable 

follows a Poisson distribution, β and γ are updated using Metropolis-Hastings random walks 

with normal proposals. 

 

Model building 

I included data from all home range cells in the initial run of the GLM described above. 

Having run this model, I tested for SAC in the model residuals with a Moran’s I test (run 

 

Fig. 2.4. Histograms of observed values and theoretical Poisson (A) and negative binomial (B) 

distributions with parameter values obtained using the “fitdist” function in R. 
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using the spdep package; Bivand, 2014). This test indicated that there was significant SAC in 

the model residuals (Moran’s I = 0.367, p < 0.001) and the estimated x-intercept of a Moran’s 

I correlogram was 1521 (i.e., I dropped to 0 at 1521 m). I therefore took a random sub-sample 

of 203 cells and ran the model again including data from sub-sampled cells only. Sub-

sampling to this extent did not eliminate SAC in the residuals of this model however 

(Moran’s I = 0.398, p < 0.05), so I repeated these steps (reducing the size of the sub-sample 

by one each time) and tested for SAC in the residuals of resultant models. A Moran’s I test 

indicated that a sub-sample of 197 cells was sufficiently small to eliminate significant SAC 

from the residuals of the model (Moran’s I = 0.109, p = 0.189). I therefore used the model 

based on this sub-sample of cells in further analyses. 

 In order to find the optimal GLM, I used the “drop1” command in the stats package 

(R Core Team, 2014) to run analysis of deviance tests on candidate models (the full model 

with each predictor variable removed in turn; Zuur et al., 2009). Where these tests indicated 

that a variable (or variables) did not contribute a significant amount of the deviance explained 

by the model, I removed the variable(s) in question and ran the model without said 

variable(s). I then assessed the models with and without said variable(s) using second-order 

Akaike’s information criterion (AICc), to determine which model was more parsimonious. I 

used AICc rather than AIC because n/K (where n = number of observations and K = number 

of parameters) was slightly smaller than 40 (Burnham and Anderson, 2004). Based on the 

above-mentioned criteria, I excluded distance-to-water from the final model, as this variable 

did not contribute significantly to the deviance explained by the model, and the AICc of the 

model with only four predictor variables (altitude, slope, distance-to-coast and vegetation 

type) was lower than that of the full model. 

 I included data from all home range cells in the sparse SGLMM. I used the default 

priors and default value for the number of Moran eigenvectors (q = 50) in the initial run of 

this model (Hughes, 2014). As in the GLM, I tested for SAC in the residuals of this model 

using a Moran’s I test, which showed that there was significant SAC in the residuals of the 

model (Moran’s I = 0.211, p < 0.001). I therefore increased the number of eigenvectors (q) in 

the model by 25 and ran the model again. I repeated this step until the resultant model yielded 

residuals that did not exhibit significant SAC—this was true of the model with q = 200 

(Moran’s I = 0.043, p = 0.068). Values of all estimate-to-Monte Carlo standard error ratios 

for different predictors were indicative of convergence of the Markov chain (Jones et al., 

2006). I did not investigate the effects of removing predictor variables from the model (on the 

deviance information criterion; DIC) because none of the highest posterior density (HPD) 
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intervals generated by the model included 0. I therefore used the model with all proposed 

predictor variables as the final sparse SGLMM, and considered the coefficient estimates 

generated by this model in further analysis and discussion. 

I evaluated the final GLM and sparse SGLMM using the parameters recommended by 

Potts and Elith (2006). Thus, I determined Pearson’s- and Spearman’s rank correlation 

coefficients (r and ρ respectively) of observed and fitted values. These values provide an 

indication of the degree of relative agreement (Pearson’s), and similarity of ranks 

(Spearman’s), between observed and fitted values. I assessed model calibration (i.e., bias and 

spread of predicted values; Potts and Elith, 2006) by fitting a simple linear regression to 

observed- and fitted values. I did not compare the root mean square errors (RMSE) of the 

models because this quantity is dependent on sample size (Potts and Elith, 2006). The 

difference in sample size between the models therefore renders such a comparison of little 

meaning in the context of assessing model performance. 

I fitted the GLMs using the stats package (R Core Team, 2014), and the sparse 

SGLMM using the ngspatial package (Hughes and Cui, 2013), in the statistical platform R (R 

Core Team, 2014). 

 

Ranging behaviour 

I took random sub-samples of 24 daily paths from winter, spring and autumn, thereby 

obtaining equal sample sizes across seasons, for the purposes of statistical analysis. These 

samples were close to normally distributed and variances were homogeneous across seasons 

(Levene’s test: F3, 92 = 1.917, p = 0.132), so I used a parametric analysis of variance 

(ANOVA) to test for differences between daily path lengths in different seasons. The 

ANOVA revealed significant differences in DPL across seasons, so I performed a Tukey’s 

Honest Significant Difference (HSD) test to determine which seasons differed in terms of 

DPL. 

For the purposes of investigating seasonal differences in ranging rates, I obtained 

equal sample sizes of ranging rates by taking random sub-samples of 1798 values from each 

of winter, spring and summer. The resultant data were highly skewed, and violated the 

assumption of homogeneity of variances across seasons (Levene’s test: F3, 7188 = 30.447, p < 

0.001). I therefore conducted a Kruskal-Wallis rank sum test to determine whether or not 

there were seasonal variations in the troop’s rate of movement. This test indicated that there 

were significant differences in KK troop’s ranging rates across seasons, so I used Wilcoxon’s 
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rank sum tests (with a Holm correction applied to the p-values; Holm, 1979) to determine 

which seasons differed in terms of ranging rates. 

 

Activity budgets and diet 

In order to control for the effects of seasonal fluctuations in day length on time allocated to 

different activities (Hill et al., 2003, 2004), I converted behavioural scan data to time spent 

engaged in different activities on each day. I did so by first calculating the proportion of scan 

observations comprised of different activities within discrete time periods during each day. 

This was necessary because the numbers of scans during different periods were not equal 

(Hanya, 2004b). I then multiplied the proportions determined in this way by the duration (in 

minutes) of each period to calculate the number of minutes allocated to different activities 

during that period. A new period commenced at sunrise and then at the turn of each hour 

through the rest of the day until sunset. Having calculated the number of minutes allocated to 

different activities during each period, I summed these values through each day in order to 

obtain daily values for the respective activities. For analysis of activity budgets and 

behavioural patterns, I used data collected on full days only. These were defined using the 

same criteria as those used for analysis of ranging behaviour, but I used scans as the defining 

characteristic of time spent with the troop. The numbers of full days in different seasons 

differed (and were small, particularly during summer) and the values for all four behaviours 

were not normally distributed during each season. I therefore used Kruskal-Wallis rank sum 

tests (with Holm corrections applied to the p-values; Holm, 1979) to determine whether or 

not the amount of time allocated to each activity differed across seasons. Where time spent in 

a given behaviour varied significantly, I performed Wilcoxon’s rank sum tests (with a Holm 

correction applied to the p-values; Holm, 1979) to determine which seasons differed in this 

respect. 

Calculating time (in hours or minutes) allocated to different activities is important in 

areas where day length varies seasonally (Hill et al., 2003, 2004), but percentage or 

proportion time activity budgets may also be informative in studies of seasonal variation in 

behaviour (Van Doorn et al., 2010). I therefore calculated proportion time activity budgets for 

each season as well, by dividing the values calculated as described above by the number of 

hours in the day in question. I arcsine transformed these data prior to further analysis because 

these values were proportions (Quinn and Keough, 2003). The transformed data were not 

normally distributed, and the proportions of time spent walking violated the assumption of 

homogeneity of variances across seasons (Levene’s test: F3, 67 = 3.912, p < 0.05). I therefore 
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used Kruskal-Wallis rank sum tests (with Holm corrections applied to the p-values; Holm, 

1979) to determine whether or not the percentage of time allocated to each activity differed 

across seasons. Where the percentage of time spent in a given behaviour varied significantly, 

I performed Wilcoxon’s rank sum tests (with a Holm correction applied to the p-values; 

Holm, 1979) to determine which seasons differed in this respect. I present seasonal changes 

in amounts of time (Hill et al., 2003, 2004), and proportions of daylight hours (Van Doorn et 

al., 2010), allocated to different activities for comparative purposes. 

I inferred the proportions of the troop’s diet comprised of foods belonging to different 

categories (above-ground plant-, subterranean plant- and animal foods) by determining the 

proportions of scan observations during which baboons fed on different foods. For the 

purposes of analyses of dietary composition, I used data from full days (based on the 

definition for calculation of activity budgets) only and arcsine transformed the data. These 

data were not normally distributed and the proportions comprised of subterranean foods 

differed across seasons in terms of standard deviations (Levene’s test: F3, 67 = 3.278, p < 

0.05). I therefore used Kruskal-Wallis rank sum tests (with Holm corrections applied to the p-

values; Holm, 1979) to determine whether there was significant variation in percentages of 

time spent feeding on different foods across seasons. If there was significant variation in 

percentages of a food type consumed across seasons, I used Wilcoxon’s rank sum tests (with 

a Holm correction applied to the p-values; Holm, 1979) to determine which seasons differed 

in terms of the baboons’ consumption of that food type. 

I calculated median values and inter-quartile ranges (IQR; where possible) of soluble 

protein content for foods belonging to each of the above-mentioned categories (with samples 

lumped according to genus). Due to small sample sizes, the only category in which I could 

conduct a statistical test (a Kruskal-Wallis rank sum test) for seasonal differences in soluble 

protein content was above-ground terrestrial plant foods. I used mass:length ratio of marine 

food items as a measure of the reward per unit foraging effort offered by marine prey items 

during different seasons. I performed Kruskal-Wallis rank sum tests to test for differences in 

the mass:length ratios of Cymbula sp. and Mytilus sp. collected during different seasons. 
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RESULTS 

Ranging 

Home range use 

The home range used by the troop over the entire study period covered an area of 45.262 km
2
 

and extended to the coast on both the east- and west sides of the Peninsula (Fig. 2.5). Thus, 

the per capita area (PCA) of KK troop was 0.81 km
2
.baboon

-1
. The home range included 

2058 cells, 108 of which were clipped (along the coast) and therefore did not cover a full 

0.0225 km
2
. There was considerable variation in the frequency of cell use (0 to 140 GPS 
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Fig. 2.5. The home range occupied by the troop throughout the study period. The shade of the 

cell indicates frequency of use as denoted in the legend. 
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Fig. 2.6. The home range areas occupied by the troop throughout winter (A), spring (B), summer 

(C) and autumn (D). The shade of each cell indicates frequency of use as denoted in the legend. 
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points) within the troop’s home range. The vast majority of cells (89.1%, n = 2058) contained 

fewer than 10 GPS points however, and 540 cells contained zero GPS points (Fig. 2.5). 

There was marked variation in the size of areas of the home range used by the troop 

during different seasons. The largest and smallest areas used during a season, were those used 

during the austral summer (41.531 km
2
) and winter (32.126 km

2
), respectively (Fig. 2.6). The 

corresponding PCA values were 0.74 km
2
.baboons

-1
 and 0.57 km

2
.baboons

-1
 in summer and 

winter respectively.  The  PCA values  of  areas  used in spring and autumn were intermediate  
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between those of summer and winter. The areas used during all four seasons extended to the 

coast on both sides of the Peninsula, and included stretches of rocky shore on both coasts. 

 The outputs of the final GLM and sparse SGLMM were similar in certain respects, 

but there were several important differences between the two. The GLM and SGLMM 

differed in terms of the number of predictor variables included in the models (distance-to-

water was removed from the GLM through the model-building process). Both analyses 

indicated that the predictor variables that were included in both models were significant 

predictors of frequency of cell use by the troop (Table 2.1). The signs of the estimates of the 

three numerical predictors that were included in both models (altitude, slope and distance-to- 

coast) were the same in the GLM and SGLMM. Both models indicated that frequency of cell 

use decreased with increasing altitude and distance-to-coast, and increased with increasing 

slope. The magnitudes of the numerical predictors’ effects differed between models however, 

with the GLM indicating greater change per unit altitude and slope than the SGLMM, and the 

SGLMM indicating a greater change per unit of distance to the coast than the GLM. Both 

models however showed that the effect of distance-to-coast on frequency of cell use was 

greater in magnitude than those of altitude or slope. The SGLMM indicated that the 

magnitude of the effect of distance-to-water on frequency of cell use was small relative to 

those of altitude, distance-to-coast and slope. 

The GLM and SGLMM both indicated that vegetation type is a significant predictor 

of frequency of cell use, but the signs and the sizes of the estimates differed between the two 

models in two out of three cases. The GLM indicated that frequency of cell use was 

significantly higher in cells dominated by Hangklip Sand Fynbos than in cells dominated by 

beach-type habitats. The output of the same model showed no significant difference between 

frequency  of  cell  use  in  cells  dominated  by  Cape  Flats  Dune  Strandveld  and Peninsula 

Sandstone Fynbos, and those dominated by beach-type habitats. The SGLMM on the other 

hand indicated that frequency of use was highest in cells dominated by beach-type habitats. 

Relative to these cells, the cells dominated by Peninsula Sandstone Fynbos were used least 

frequently by the troop. The higher r- and ρ-values of the correlations (Pearson’s and 

Spearman’s correlations respectively) between observed- and fitted values from the SGLMM 

(Table 2.2) indicate that this model performed better than the GLM (fitted values from the 

SGLMM were more similar to the observed values, and the ranks of these values were more 

similar to those of the observed values; Potts and Elith, 2006). The intercept terms from the 

regressions of observed values against fitted values from the two models indicate that the 

levels of bias in the fitted values from  the  SGLMM were lower than in  those from the  GLM.  



 

 

 

 

Table 2.1. Results of the GLM and SGLMM fitted to area-corrected frequency of use of cells within the KK troop’s home range
1
 

 GLM  SGLMM 

       H.P.D. interval limits  

Predictor Estimate SEM z p(> |z|)  Estimate Lower Upper MCSE 

Altitude -0.339 0.115 -2.940 < 0.01  -0.133 -0.170 -0.093 0.0006 

Slope 0.268 0.100 2.673 < 0.01  0.205 0.176 0.232 0.0004 

Dist. Coast -0.407 0.117 -3.486 < 0.001  -0.507 -0.562 -0.454 0.0006 

Dist. Water – – – –  -0.048 -0.091 -0.007 0.0006 

C.F.D. Strandveld 0.720 0.589 1.224 0.221  -0.629 -0.735 -0.532 0.0013 

H.S. Fynbos 1.512 0.615 2.457 < 0.05  -0.324 -0.515 -0.145 0.0032 

P. S. Fynbos -0.166 0.543 -0.305 0.760  -0.759 -0.875 -0.651 0.0016 

1
H.P.D. = highest probability density; SEM = standard error of the mean; MCSE = Monte Carlo standard error; Dist. = distance to; C.F.D = 

Cape Flats Dune; H.S. = Hangklip Sand; P.S. = Peninsula Sandstone. 

5
0
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The slope terms from the same regressions indicate that the bias in the fitted values of the 

SGLMM (what little there was) was more consistent than that in those of the GLM. In light 

of the SGLMM’s superior performance and lower levels of bias, the results of this model 

only will be considered in the discussion. 

 

 

 

 

 

 

 

 

 

 

Ranging behaviour 

The troop’s mean (± SE) daily path length (DPL) throughout the study period (based on 24 

randomly selected paths from each season) was 6.044 (± 0.179) km. There were significant 

seasonal differences in the troop’s DPL (F3, 92 = 12.14, p < 0.001; Fig. 2.7). The troop 

travelled further on summer days (mean ± SE = 7.600 ± 0.331 km) than on days in winter (p 

< 0.001), spring (p < 0.001) or autumn (p < 0.01). 

The troop’s mean (± SE) 

rate of travel throughout the study 

period  was  0.556 (± 0.006) 

km.hr
-1

. There were significant 

differences in travel rates across 

seasons (χ
2
 = 22.037, df = 3, p < 

0.001; Fig. 2.8), with the troop’s 

travel rates being significantly 

higher during summer (median = 

0.489 km.hr
-1

, IQR: 0.185 – 0.872 

km.hr
-1

) than during winter (p < 

0.05), spring (p < 0.001) or 

autumn (p < 0.05). The troop 

Table 2.2. Results of evaluation and calibration of non-spatial and spatial 

models
1
 

  Correlation  Calibration 

Model n r ρ  b m 

GLM 197 0.536 0.401 0.689 0.864 

SGLMM 2058 0.712 0.612 -0.131 1.028 

1
n = number of cells included in model; r = Pearson’s correlation 

coefficient; ρ = Spearman’s rank correlation coefficient; b = intercept of line 

generated by linear regression; m = gradient of line generated by linear 

regression. 

 
Fig. 2.7. Daily path lengths (DPL) of the Kanonkop troop 

during different austral seasons. Points and error bars 

indicate mean values and standard errors respectively. 

Win = winter, Spr = spring, Sum = summer, Aut = 

autumn. 
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travelled slowest during spring (median = 0.420 km.hr
-1

, IQR: 0.143 – 0.757 km.hr
-1

), but 

spring travel rates were not significantly slower than those recorded in either winter or 

autumn. 

 

General behaviour and diet 

Activity budgets and activity patterns 

During all four seasons, the two activities that the baboons allocated the most time to were 

feeding and walking (Fig. 2.9). There was some variation in the medians of time spent 

feeding in different seasons (range: 249.0 – 281.1 min.day
-1

), but there were no significant 

seasonal differences in time allocated to this activity (χ
2
 = 2.327, df = 3, p = 0.507). Time 

spent walking varied to a much greater extent across seasons (range of median values: 161.1 

– 277.2 min.day
-1

) and the seasonal differences were statistically significant (χ
2
 = 37.492, df 

= 3, p < 0.001). The troop spent more time walking in summer and autumn than in winter or 

spring (p < 0.001 in all cases; Fig. 2.9A). Neither differences in time spent walking in winter 

and spring, nor differences in time spent walking in summer and autumn, were significant. In 

winter and spring the troop spent more time feeding than walking, while in summer and 

autumn the reverse was true (Fig. 2.9A). 

Within a given season, the amounts of time that the troop spent resting and socialising 

were markedly shorter than those spent walking and feeding (Fig. 2.9A). There were no 

significant differences in time spent engaged in social behaviour across seasons, but there 

were significant differences in 

time spent resting across seasons 

(χ
2
 = 27.620, df = 3, p < 0.001). 

The troop spent more time resting 

in summer than during any other 

season (p < 0.001 in all cases), and 

less time resting in winter than in 

spring (p < 0.01). 

The proportion time 

activity budgets displayed a 

similar pattern to time spent 

engaged in activities, in that the 

larger proportions of the troop’s 

 
Fig. 2.8. Travel rates of the Kanonkop troop during 

different seasons. Points and bars indicate median values 

and inter-quartile ranges respectively. Win = winter, Spr = 

spring, Sum = summer, Aut = autumn. 
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time in each of the seasons were comprised of time spent feeding and walking (Fig. 2.9B). 

The ranges of median proportions of time allocated to feeding and walking, in different 

seasons, were 0.34 – 0.44, and 0.29 – 0.39, respectively. The significant differences across 

seasons, for given behaviours, were not the same however. The proportion of time allocated 

to feeding differed significantly across seasons (χ
2
 = 21.392, df = 3, p < 0.001), with the 

proportion of time spent feeding in winter being greater than proportions spent feeding in 

summer and autumn (p < 0.001 in both cases). There were also significant differences in the 

proportion of time spent resting in different seasons (χ
2
 = 16.998, df = 3, p < 0.001). The 

 

Fig. 2.9. Activity budgets divided into times (in minutes) allocated to different activities (A), and 

proportions of daylight hours allocated to different activities (B). Win = winter, Spr = spring, Sum 

= summer, Aut = autumn; values in parentheses in the legend indicate numbers of full days per 

season; error bars indicate interquartile ranges; lower case letters in plots indicate significant 

differences (values that share letters are not significantly different). 
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troop  allocated  a larger proportion of time available to time spent resting in summer,  than in 

any other season (comparison with spring: p < 0.05; comparison with autumn and winter: p < 

0.01). Finally, the proportion of time spent walking differed across seasons (χ
2
 = 18.456, df = 

3, p < 0.001). The baboons allocated a larger proportion of their time to walking in autumn 

 
 

Fig. 2.10. Activity patterns (proportions each hour allocated to different behaviours) through 

daylight hours in different seasons. Win = winter, Spr = spring, Sum = summer, Aut = autumn. 

 



55 

 

than in winter or spring (p < 0.01 in both cases). Also, the proportion of time allocated to 

walking in summer was greater than the proportion allocated in spring (p < 0.05). 

 In all four seasons, there were changes in the predominant activities at different times 

of day (Fig 2.10). These differences in proportions of time allocated to different activities 

were more pronounced in winter and spring, than in summer and autumn. In winter and 

spring, the early hours of the morning were dominated by resting and social behaviour. 

Through mornings in these seasons, the proportions of hours allocated to feeding increased, 

to the extent that feeding was the dominant activity from four hours after sunrise (in both 

seasons) until sunset (in winter), and three hours before sunset (in spring). In winter, 

proportions of hours spent resting and engaging in social activity increased slightly towards 

sunset. This trend was more pronounced in spring when resting and socialising were the 

dominant activities during the hour immediately preceding sunset. The patterns were similar 

in summer and autumn, with time spent feeding increasing through the morning and 

decreasing in the latter part of the afternoon. In all four season, proportions of hours spent 

walking were relatively stable, with slight increases in the early part of the morning (within 

four hours of sunrise) and decreases during the latter part of the afternoon (two to three hours 

before sunset). 

 

Diet and nutrient analyses 

The KK troop’s diet was dominated by above-ground terrestrial plant tissues during all four 

seasons (range of median values: 0.56 – 0.84; Fig. 2.11). There were however significant 

differences in the proportion of the terrestrial foods consumed across seasons (χ
2
 = 13.057, df 

= 3, p < 0.05). The proportion of the troop’s diet comprised of above-ground foods was 

greater in spring than in summer (p < 0.05) and autumn (p < 0.01). The dietary proportion 

comprised of subterranean foods varied across seasons, but differences across seasons were 

not significant. The proportion of the troop’s diet comprised of marine animal foods was 

small in all four seasons (range of median values: 0 – 0.03), and there were no significant 

differences in proportions of marine animal foods across seasons. 

 There were pronounced differences in the median soluble protein contents of foods 

belonging to different groups (Fig. 2.12). The vast majority of above-ground terrestrial plant 

foods (range of median values: 3.56 – 6.24) and subterranean plant foods (range of median 

values: 2.91 – 5.48) were much poorer in soluble protein, than marine foods (range of median 

values: 26.39 – 29.43). The exception was the seed of the Leucodendron spp. plants (range: 

43.64 – 51.06), which was richer in soluble protein than marine foods during all four seasons. 
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Fig. 2.11. Proportions of the troop’s diet comprised of food items belonging to different categories 

(based on time spent consuming foods) during different seasons. Points indicate median values, and 

error bars denote inter-quartile ranges. Letters above error bars indicate significant differences 

among seasons. Win = winter, Spr = spring, Sum = summer, Aut = autumn. 

 
 

Fig. 2.12. Soluble protein contents of foods consumed by KK troop during different seasons. 

Squares indicate median values of all foods in the respective categories, error bars denote inter-

quartile ranges of said foods, and hollow circles denote values for Leucodendron seeds during 

respective seasons. Win = winter, Spr = spring, Sum = summer, Aut = autumn. 
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Fig. 2.13. Soft tissue mass-to-shell length ratio of Cymbula sp. (A) and Mytilus sp. (B) collected from 

the intertidal zone within the KK troop’s home range during different seasons. Win = winter, Spr = 

spring, Sum = summer, Aut = autumn. 

 

A Kruskal-Wallis rank sum test indicated that the small seasonal differences in soluble 

protein contents of above-ground foods were not significant. Small sample sizes did not allow 

for a statistical comparison of protein in either subterranean or animal foods. All marine 

animals that were sampled tested positive for alkaloids (with all three reagents), and 

contained low levels of polyphenols (see Appendix A). 

  The mass:length ratios of the marine invertebrates that were analysed (Mytilus sp. 

and Cymbula sp.) showed some variation (Fig. 2.13), but Kruskal-Wallis rank sum tests 

indicated that seasonal differences in this quantity were not significant. 

 

DISCUSSION 

Home range size  

The home range used by the KK troop during the course of this study was larger than that 

occupied by any other Peninsula troop studied to date (Hall, 1962; Davidge, 1978; Hoffman 

and O’Riain, 2012a). The home range used over the course of this study was in fact larger 

than that occupied by the same troop during Hoffman and O’Riain’s (2012 a) study. There 

are two plausible (non-mutually exclusive) explanations for this difference. The first is that 

Hoffman and O’Riain (2012 a) underestimated the size of the troop’s home range in their 

study. This is likely, because the cell accumulation curve for the home range estimated by 

Hoffman and O’Riain did not reach a plateau (Hoffman, 2011). The cell accumulation curve 
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generated in this study on the other hand did reach a plateau prior to the conclusion of data 

collection (Fig. 2.2). This qualitative difference is unsurprising as data were collected for this 

study on a greater number of days than for the study mentioned above (136 days as opposed 

to 91). Also, Hoffman and O’Riain (2012 a) collected data on a relatively small number of 

days in summer—the season during this study in which the troop used the largest area (Fig. 

2.6). 

The second plausible explanation is that the difference in the size of the troop’s home 

range was a consequence of troop growth over the period between the two studies. It has been 

well-documented that for groups of a given primate species, in habitats which are similarly 

productive (see below), home range size is positively correlated with the number of animals 

in the group  (Iwamoto and Dunbar, 1983; Barton et al., 1992; Gillespie and Chapman, 2001; 

Dias and Strier, 2003; Ganas and Robbins, 2005; Hoffman and O’Riain, 2012a). It is for this 

reason that PCA has been used as a measure of range size for comparison across groups of 

the same species (Riley, 2008). The KK troop grew from 49 to 55 animals between the 

previous study and the culmination of this study, which meant that PCA values were very 

similar across the two studies (0.77 vs 0.81 km
2
.baboon

-1
). This suggests that if Hoffman and 

O’Riain (2012 a) did underestimate the size of the troop’s home range, they did so only to a 

very small extent. Thus, although there were slight quantitative differences between the 

results of this study and those reported by Hoffman and O’Riain (2012 a), the results 

presented here support the inference based on their data that the PCA of KK troop is higher 

than that of any other Peninsula troop (see Table 2.3). 

The high PCA of KK troop suggests that the availability of food resources in this 

troop’s home range is lower than in those of all other extant Peninsula troops. Previous 

studies have shown that within a given primate species, PCA is negatively correlated with 

food availability within a group’s home range (Hanya et al., 2005; Riley, 2008) and may 

change with time as food availability fluctuates (Di Bitetti, 2001). KK is the only Peninsula 

troop that does not feed on human-derived foods, including agricultural produce  (Hoffman 

and O’Riain, 2012 a) or the nutrient-rich tissues of alien-invasive plants (Davidge, 1978). The 

abundance, low processing costs and (in some cases) nutrient-richness of human-derived 

foods result in primates with access to these foods being released from the ecological 

constraints of foraging on natural foods (Forthman Quick, 1986; Altmann and Muruthi, 1988; 

Van Doorn, 2009; Van Doorn et al., 2010; Kaplan et al., 2011). 



 

 

Table 2.3. Troop sizes, home range sizes, per-capita areas, and densities of baboon (Papio spp.) troops with similar social structures to KK
1
 

Species 
Troop 

size 
Home range 

(km
2
) 

PCA 

(km
2
.individual

-1
) 

Density 

(individuals.km
-2

) Locality Reference 

Papio ursinus 20 9.1 0.45 2.2 Cape Peninsula, R.S.A. DeVore and Hall, 1965 

 
35 14.8 0.42 2.4 Cape Peninsula, R.S.A. DeVore and Hall, 1965 

 
80 33.7 0.42 2.4 Cape Peninsula, R.S.A. DeVore and Hall, 1965 

 
115 9.5 0.08 12.1 Cape Peninsula, R.S.A. Hoffman and O’Riain, 2012a 

 
49 37.7 0.77 1.3 Cape Peninsula, R.S.A. Hoffman and O’Riain, 2012a 

 
36 9.1 0.25 4.0 Cape Peninsula, R.S.A. Hoffman and O’Riain, 2012a 

 

35 10.6 0.30 3.3 Cape Peninsula, R.S.A. Hoffman and O’Riain, 2012a 

 
26 9.3 0.36 2.8 Cape Peninsula, R.S.A. Hoffman and O’Riain, 2012a 

 
24 8.3 0.35 2.9 Cape Peninsula, R.S.A. Hoffman and O’Riain, 2012a 

 
22 7.5 0.34 2.9 Cape Peninsula, R.S.A. Hoffman and O’Riain, 2012a 

 
16 1.5 0.10 10.4 Cape Peninsula, R.S.A. Hoffman and O’Riain, 2012a 

 
16 5.6 0.35 2.8 Cape Peninsula, R.S.A. Hoffman and O’Riain, 2012a 

 
9 18.9 2.10 0.5 Drakensberg, R.S.A. Whiten et al., 1987 

 
14 10.0 0.71 1.4 Drakensberg, R.S.A. Whiten et al., 1987 

 
60 23.3 0.39 2.6 N. Limpopo Province, R.S.A. Stoltz and Saayman, 1970 

 
77 13.0 0.17 5.9 N. Limpopo Province, R.S.A. Stoltz and Saayman, 1970 

 
40 15.5 0.39 2.6 N. Limpopo Province, R.S.A. Stoltz and Saayman, 1970 

 
33 9.4 0.29 3.5 Namib Desert, Namibia Hamilton et al., 1976 

 
28 4.0 0.14 7.0 Namib Desert, Namibia Hamilton et al., 1976 

 
108 4.7 0.04 23.0 Okavango, Botswana Hamilton et al., 1976 

5
9
 



 

 

 
109 6.5 0.06 16.8 Okavango, Botswana Hamilton et al., 1976 

 
39 2.1 0.05 18.6 Okavango, Botswana Hamilton et al., 1976 

 
71 4.8 0.07 14.8 Okavango, Botswana Hamilton et al., 1976 

 88 28.3 0.32 3.1 Suikerbosrand, R.S.A. Anderson 1981 

 74 24.9 0.34 3.0 Suikerbosrand, R.S.A. Anderson 1981 

 82 24.8 0.30 3.3 Suikerbosrand, R.S.A. Anderson 1981 

 68 20.5 0.30 3.3 Suikerbosrand, R.S.A. Anderson 1981 

P. anubis 50 19.7 0.39 2.5 Gilgil, Kenya Harding, 1976 
 

100 43.8 0.44 2.3 Laikipia Plateau, Kenya Barton et al., 1992 

 
12 5.2 0.43 2.3 Nairobi, Kenya DeVore and Hall, 1965 

 
17 23.8 1.40 0.7 Nairobi, Kenya DeVore and Hall, 1965 

 
24 18.1 0.76 1.3 Nairobi, Kenya DeVore and Hall, 1965 

 
28 7.8 0.28 3.6 Nairobi, Kenya DeVore and Hall, 1965 

 
28 40.1 1.43 0.7 Nairobi, Kenya DeVore and Hall, 1965 

 
40 24.9 0.62 1.6 Nairobi, Kenya DeVore and Hall, 1965 

 
77 30.3 0.39 2.5 Nairobi, Kenya DeVore and Hall, 1965 

 
87 35.8 0.41 2.4 Nairobi, Kenya DeVore and Hall, 1965 

 
58 3.9 0.07 14.9 Queen Elizabeth N.P., Uganda Rowell, 1966 

 
32 5.4 0.17 5.9 Queen Elizabeth N.P., Uganda Rowell, 1966 

P. cynocephalus 42 24.1 0.57 1.7 Amboseli, Kenya Altmann and Altmann, 1970 

 
106 16.7 0.16 6.3 Amboseli, Kenya Altmann and Altmann, 1970 

 
130 43.0 0.33 3.0 Mikumi N.P., Tanzania Rasmussen, 1979 

1
N.P. = National Park; R.S.A. = Republic of South Africa. 

6
0

 



61 

 

The PCA of KK troop is towards the upper extreme of the range of values observed in 

troops of congeneric- and conspecific animals across the genus’s distribution (see Table 2.3; 

DeVore and Hall, 1965; Rowell, 1966; Altmann and Altmann, 1970; Stoltz and Saayman, 

1970; Hamilton et al., 1976; Harding, 1976; Rasmussen, 1979; Anderson, 1981; Whiten et 

al., 1987; Barton et al., 1992). The only troop of chacma baboons that exhibited higher PCA 

than KK troop was a troop that inhabited a high-altitude home range in the Drakensberg 

mountains characterised by severe thermal and nutrient-stress (Whiten et al., 1987; Henzi et 

al., 1992). The PCA observed elsewhere that was most similar to that of KK troop was that of 

Whiten et al.’s (1987) Low troop. Although conditions in Low troop’s home range were less 

severe than those in the home range of the above-mentioned authors’ other study troop, the 

baboons of this troop were still considered to be highly stressed. KK troop’s PCA reported 

here was more than double that of troops studied in habitats defined as the most extreme in 

South Africa based on climatic variables and altitude (Anderson, 1982). These comparisons 

suggest that, despite the temperate climate, the presence of moderate standing plant biomass 

(relative to baboon habitats elsewhere) and marine invertebrates within their home range 

(Stock and Allsopp, 1992; Cowling et al., 1996), KK troop is among the most nutrient-

stressed baboon troops for which data of this type are available in the literature. 

The variation in the size of areas used by the troop across seasons suggests that the 

severity of nutrient-stress experienced by KK baboons changes on an annual basis. This is 

likely related to seasonal changes in plant phenology (Pierce, 1984; Stock et al., 1987) and 

perhaps changes in the nutritional reward offered by marine foods (Branch, 1974; Van Erkom 

Schurink and Griffiths, 1991; Hodgson, 2010) per unit foraging effort. The troop’s use of a 

relatively large area in summer, and a relatively small area in winter, indicate that the upper 

and lower extremes of nutrient stress are experienced during these two seasons respectively. 

 

Home range use 

As is typical in primates (e.g., Whiten et al., 1987; Wallace, 2006; Grueter et al., 2008; 

Willems et al., 2009), the KK troop did not use all parts of their home range evenly (Fig. 2.5). 

In a predator-free environment it can be assumed that primates’ preference for land with 

particular attributes is related to one or more of their principle ecological needs, namely food 

(Clutton-Brock, 1975; Harding, 1976; Henzi et al., 1992; Kirkpatrick et al., 1998; Di Bitetti, 

2001), water (Altmann and Altmann, 1970; Stoltz and Saayman, 1970; Chapman, 1988; 

Scholz and Kappeler, 2004) and sleeping sites (Rasmussen, 1979; Zinner et al., 2001; Liu and 

Zhao, 2004). The results of the sparse SGLMM indicated that KK troop made preferential use 
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of parts of their home range at lower altitudes, parts with steeper slopes, parts that were close 

to the coast and parts that were close to sources of fresh surface water. 

In a recent population-level study, Hoffman and O’Riain (2012 b) reported similar 

preferences for land at lower altitudes and with steeper slopes across nine Peninsula troops. 

The above-mentioned authors attribute Peninsula baboon’s partiality to low-lying land to a 

preference for relatively more productive areas (within the terrestrial context; Hoffman, 

2011) and land which is home to greater standing biomass (Hoffman and O’Riain, 2012b). 

They also refer to the availability of marine foods at the coast as a possible factor explaining 

the Peninsula baboons’ preference for low-lying land. This is presumably based on the 

assumption that cells at lower altitude allow easier (or at least quicker) access to the coast. 

This may be true across the Peninsula as a whole but, as demonstrated here, there is not a 

significant correlation between distance-to-coast and altitude within the KK troop’s home 

range. The results of the model presented here do however indicate that both altitude and 

distance-to-coast are significant predictors of baboons’ use of different parts of their home 

range. This finding therefore corroborates Hoffman and O’Riain’s (2012 b) assertion that 

ease of access to the coast is a factor that explains (at least in part) the Peninsula baboons’ 

(particularly those without access to human foods) home range use patterns. As there is no 

other ecologically important resource available right at the coast, it is plausible that this 

pattern arises from the baboons’ desire to obtain the foods that are available in the intertidal 

zone. 

The results of the sparse SGLMM reported here, like those reported by Hoffman and 

O’Riain (2012 b), indicated that habitat type also had a significant effect on baboon area use. 

The habitat categories used in the two models were markedly different however, as Hoffman 

and O’Riain (2012 b) investigated baboons’ preference for transformed habitats of different 

types over natural habitats (which they lumped into one category). Hoffman and O’Riain 

(2012 b) attributed baboons’ preference for human-modified habitats to augmented food 

availability in these habitats. It seems highly likely that the patterns observed here might also 

be driven largely by differences in food availability between habitat types. KK troop 

preferred cells dominated by beach-type habitats to those dominated by any of the terrestrial 

vegetation-type habitats. Considering the absence of either water or sleeping sites (both of 

which are considered to be critical resources for baboons; Henzi et al., 1992) on the coast, 

this finding suggests that KK baboons use this habitat because of the availability of marine 

food rewards. 
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The magnitudes of the effects of terrestrial habitats on baboon cell use varied 

considerably, and are likely linked primarily to differences in food availability between 

vegetation types. The largest negative effect on cell use, relative to that of beach-type 

habitats, was that associated with Peninsula Sandstone Fynbos, which is the least productive 

terrestrial vegetation type in the KK troop’s home range (Zhao and Running, 2010). This 

indicates that, as was predicted, the baboons opted to spend greater amounts of time in more 

productive habitats. The pattern does not however hold true across the two more productive 

vegetation types in the KK troop’s home range, namely Hangklip Sand Fynbos and Cape 

Flats Dune Strandveld. Relative to beach-type habitats, Cape Flats Dune Strandveld had a 

greater negative effect on cell use than Hangklip Sand Fynbos. This pattern is surprising as 

Hangklip Sand Fynbos is the less productive of the two habitats (Zhao and Running, 2010), 

and sclerophylly is less common in plants that make up Cape Flats Dune Strandveld 

communities (Rebelo et al., 2006), so nutrients should be more accessible in these 

communities. The apparent preference for Hangklip Sand Fynbos (over Cape Flats Dune 

Strandveld) is therefore unlikely to be driven by nutritional needs, and might in fact be a 

result of the baboons’ use of a particular sleeping site. Hangklip Sand Fynbos-dominated 

cells in which high numbers of GPS points were recorded, were those in the southern part of 

KK troop’s home range, 600 – 1500 m inland from the east coast. These cells surrounded 

(and included, in the case of one cell) one of the KK troop’s frequently-used sleeping sites. It 

is therefore plausible that the troop made extensive use of these cells both because they 

offered valuable food resources, but also because they were along paths to the sleeping site in 

question. This inference is given further credence by findings of previous studies on baboons, 

which have shown that sleeping site location may have profound effects on ranging patterns 

(Rasmussen, 1979; Henzi et al., 1992).  

KK troop’s preferential use of cells characterised by steep slopes was not unexpected 

considering the findings of Hoffman and O’Riain (2012 b). These authors attributed 

Peninsula baboons’ preference for steeply sloped land to their need for sleeping sites that are 

located on cliffs. This is a plausible explanation for the preference shown by KK troop as all 

but one of the troop’s 16 sleeping sites were located on cliffs and steeply-sloped rocky 

outcrops within their home range. 

Thus, the results of this study and those reported by Hoffman and O’Riain (2012 b), 

are in direct contradiction in only one respect, namely the effect of distance to fresh surface 

water on baboon land use. The above-mentioned authors found that probability of baboon 

occurrence increased with distance-to-water, while abundance (i.e. number of GPS points 
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within cells) was not affected by distance-to-water. Based on these results, Hoffman and 

O’Riain (2012 b) concluded that the Peninsula is not a water-stressed environment. The 

negative effect of distance-to-water reported here suggests that this is not the case for all 

Peninsula troops, as it shows that KK troop prefers land that is in close proximity to fresh 

water sources. This is likely a result of there being fewer perennial sources of fresh water on 

the southern-most part of the Peninsula (South African National Parks, unpublished data), 

which might result in access to water being a more important driver of baboon ranging 

patterns on this part of the Peninsula. That said, the magnitude of the effect was small 

compared to those of altitude and slope, and was an order of magnitude smaller than that of 

distance-to-coast. Thus, despite the contradiction, it seems that the results of this study and 

those reported by Hoffman and O’Riain  (2012 b) lead to the same inference: the presence of 

surface water is not a key driver of land use patterns of baboons in the Cape Peninsula. 

 

Daily paths and rates of travel 

The troop’s DPLs observed over the entirety of this study were longer (on average) than 

those observed in the same troop by Hoffman and O’Riain (2012 a) and Hall (1962) (Hall’s C 

troop is assumed to be the same troop based on home range location). In the case of the 

former, the difference might be due, at least in part, to variation in data collection protocols 

between the studies. The distribution of DPLs reported here was more even across seasons 

than was the case in Hoffman and O’Riain’s (2012 a) study—more DPLs were recorded in 

summer and autumn for this study (see Fig. 2.1). There is however an alternative explanation 

for the differences between the results reported here and those reported by Hoffman and 

O’Riain (2012 a), that is related to the troop’s biology. Seasonal bias in sampling can be ruled 

out as a cause of the difference between the results reported and those reported by Hall 

(1962), as Hall’s sample sizes in different seasons were very similar. It is however worth 

noting that he recorded fewer DPLs overall than were reported either in this study, or by 

Hoffman and O’Riain (2012 a). Interestingly, the differences between the results reported 

here, and those presented in each of the above-mentioned studies are likely caused by 

different biological factors. 

As is the case in other primates (Doran, 1997; Goldsmith, 1999; Steenbeek and Van 

Schaik, 2001; Ganas and Robbins, 2005), baboon troops’ DPLs are affected by group size 

and food availability—DPL increases with troop size (Hoffman and O’Riain, 2012a) and 

with decreasing food availability (Barton et al., 1992; Henzi et al., 1992). It seems likely that 

the former might be the cause of the difference between the results reported here and those 
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reported by Hoffman and O’Riain (2012 a), as troop size increased by seven over the period 

between the studies. The difference between the troop’s ranging patterns during Hall’s (1962) 

study and this study on the other hand, was probably caused by changes in food availability 

(troop size varied very little across the two studies). At the time when Hall was collecting 

data, there were large, dense stands of alien plants (mostly Acacia spp.) within the Park (Hall, 

1963). These plants produce nutrient-rich seeds, which were an important food source for 

baboons in the area (Hall, 1962; Davidge, 1976, 1978). It stands to reason therefore that 

removal of these plants as part of an alien clearing project (prior to the period during which 

data were collected for this study), would have resulted in a marked decline in food 

availability within the troop’s home range. This decline could have driven the troop to travel 

further in search of food on a daily basis. 

Relative to most other troops studied by Hoffman and O’Riain (2012 a), KK troop 

travelled further on a daily basis. This is perhaps unsurprising, as this troop is larger than all 

but one of the above-mentioned authors’ study troops. It was, however, not the largest of the 

Peninsula troops that travelled further than KK troop (that troop’s average DPL was in fact 

less than half of that reported here). In this case (where the larger troop travels the shorter 

distance), it is clear that food availability is much lower in KK troop’s home range than in 

that of the other troop. The reason for this is that the larger troop occupies a home range 

which is dominated by agricultural land which includes both grapes and barley (Hoffman and 

O’Riain, 2012a). A comparison between KK troop and the other troops studied by Hoffman 

and O’Riain (2012 a) is more difficult to interpret, as the effects of troop size and food 

availability are difficult to tease apart. The same is true of a comparison between KK troop 

and “O troop” studied by Davidge (1978). 

Despite the mean value reported here being almost half-a-kilometre longer than that 

reported by Hoffman and O’Riain (2012 a), it would not rank higher or lower than said value 

when compared to mean DPLs of other Peninsula troops reported by the above-mentioned 

authors. Thus, the results of this study corroborate Hoffman and O’Riain’s finding that KK 

troop travels further on a daily basis than four other non-monitored Peninsula troops, and 

further than all other Peninsula troops studied by the above-mentioned authors, bar one. 

The troop most similar to KK troop (in terms of number of individuals) for which 

DPL data are available was that studied by Harding (1976) at Gilgil, Kenya. This troop, 

which inhabited land dominated by grassland with occasional patches of scrub, numbered 50 

baboons and travelled roughly a kilometre less than KK troop on a daily basis. This suggests 
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that KK troop is more nutrient-stressed than baboons living in the above-mentioned habitat 

matrix. 

Perhaps the most telling comparison that may be drawn between KK troop and other 

troops includes troops at Suikerbosrand (Anderson, 1981, 1982). The baboons at this site 

must endure adverse environmental conditions (due to high altitude and extreme climate) and 

are therefore stressed as thermoregulation is energetically costly (Anderson, 1982). All of the 

Suikerbosrand troops studied by Anderson (1981, 1982) were larger than the KK troop (two 

of the four troops numbered more than 80 individuals), but travelled shorter distances on a 

daily basis. This suggests that thermally stressed Suikerbosrand baboons fulfil their nutrient- 

and energetic requirements more easily than KK baboons. Considering the Peninsula’s 

temperate climate, it might be inferred that foods are in short supply in KK troop’s home 

range, or that the quality of foods that are available is poor. 

The seasonal fluctuation in DPL does however suggest that either the baboons’ 

requirements, or the availability of higher quality foods (or both), varied through the year. 

KK baboons needed to travel further in summer than during other seasons, in order to find 

sufficient food to fulfil their nutrient- and energy requirements. Interestingly, this was not 

merely a result of increased day length (allowing the troop more time to travel), as the 

increased DPL in summer was mirrored by a higher rate of travel during the same season. KK 

troop’s rates of travel during spring were comparable to those of baboons at Gilgil, Kenya 

(Harding, 1976), but were longer during other seasons and over the study period as a whole. 

This provides further evidence for the inference that KK baboons are nutrient-stressed 

relative to troops elsewhere, and that this stress is most severe during the warm, dry summer 

months. 

 

Time allocation and behavioural patterns 

In terms of both time spent (in minutes), and percentage, of activity budgets, feeding and 

walking were the dominant activities throughout all four seasons. This is typical of baboons 

(Post, 1981; Whiten et al., 1987; Hill et al., 2003; Alberts et al., 2005), except where troops 

have access to abundant human-derived foods (Forthman Quick, 1986; Altmann and Muruthi, 

1988; Bronikowski and Altmann, 1996; Hoffman and O’Riain, 2011). The effect of 

exploitation of human-derived foods is indicative of a broader trend in baboon behavioural 

ecology. That is, like other primates (Agetsuma and Nakagawa, 1998; Hanya, 2004b; Riley, 

2007; Harris et al., 2009; Chaves et al., 2011), baboons typically allocate more time to 

activities involved in the acquisition of food when food availability decreases (Post, 1981; 
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Alberts et al., 2005) or when their nutrient requirements increase (Dunbar and Dunbar, 1988). 

Due to the role of locomotion in food acquisition, certain authors have defined “foraging 

time” as the sum of time spent feeding and walking (Bronikowski and Altmann, 1996; 

Alberts et al., 2005). This is a more suitable proxy for nutrient stress than feeding time only, 

because certain primates respond to declines in the availability of preferred foods by 

spending more time travelling (in order to reach widely dispersed foods), either instead of, or 

in addition to, increasing feeding time (Overdorff et al., 1997; Gursky, 2000; Clarke et al., 

2002). 

Most studies of baboon time allocation to date have reported percentage time activity 

budget (PTAB) data rather than time (in minutes or hours) allocated to different activities 

(e.g., Forthman Quick, 1986; Whiten et al., 1987; Altmann and Muruthi, 1988; Alberts et al., 

2005; Dunbar et al., 2009; Hoffman, 2011). Thus, there are more PTAB data available for the 

purposes of comparing KK troop’s time allocation to that of other troops. As a percentage of 

the KK troop’s PTAB, foraging time (sensu Bronikowski and Altmann, 1996) was lower than 

that of troops of congenerics that regularly feed on human foods both elsewhere (Forthman 

Quick, 1986; Altmann and Muruthi, 1988; Bronikowski and Altmann, 1996) and on the 

Peninsula (Van Doorn et al., 2010; Hoffman, 2011); was comparable to that of natural-

foraging troops in Amboseli, Kenya (Post, 1981; Bronikowski and Altmann, 1996); and was 

lower than that of natural-foraging, thermal- and nutrient-stressed troops in the Drakensberg 

(Whiten et al., 1987). This suggests that KK baboons are more nutrient-stressed than baboons 

with access to human foods, but not markedly more stressed than savannah baboons, over the 

course of the year. 

There was however significant seasonal variation in the percentages of KK troop’s 

time allocated to feeding and walking, with the result that in winter and summer (when 

foraging time comprised greater proportions of KK troop’s PTAB), KK troop allocated 

similar amounts of time to foraging as did the lower of the study troops in the Drakensberg 

(Whiten et al., 1987). This may be indicative of higher nutrient-stress in these two seasons 

(than in either spring or autumn). Although interesting, and useful for purposes of 

comparison with other troops, PTAB data comparisons across seasons should be carried out 

with caution where study sites are located far from the equator. The reason for this is that 

PTAB data fail to account for the (potentially substantial) seasonal changes in time available 

for allocation to different activities that result from variation in day length (Hill et al., 2003, 

2004).  
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Foraging time (in minutes) did vary with season, but this was entirely due to seasonal 

variation in time spent walking, as time spent feeding varied little across seasons. KK troop 

spent significantly more time walking during the warm, dry summer and autumn months than 

during winter or spring. A similar seasonal pattern was observed in the time allocation of 

baboons at De Hoop (a fynbos habitat at a similar latitude to the east of the Cape Peninsula; 

Hill et al., 2003) and even a semi-provisioned Peninsula troop (Van Doorn et al., 2010). The 

amount of time that KK troop allocated to foraging was greater than that allocated by Hill et 

al.’s (2003) study troop in De Hoop (similar habitat to the Peninsula), and much greater than 

that allocated by Van Doorn et al.’s (2009; 2010) study troops on the Peninsula. These 

comparisons suggest that KK troop is indeed nutrient-stressed (certainly more so than nearby 

troops with access to human foods), and that the troop adjusts to the relative harshness of the 

Peninsula’s warm, dry summers by increasing time spent walking and foraging at the same 

time. 

The other activity which exhibited seasonal variation in time allocation was resting—

KK troop spent less time resting in winter or spring than in summer. As has been reported 

elsewhere (Dunbar and Dunbar, 1988), the amount of time allocated to social activity was 

held almost constant through the four seasons. This corroborates Dunbar and Dunbar’s 

(1988) statement that resting time is somewhat more plastic, and will be sacrificed before 

time spent engaged in social activity where baboons are nutrient-stressed. The percentage of 

their time that KK troop allocated to social activity was similar to that reported for other 

troops in several regions, including the Cape Peninsula (Altmann and Muruthi, 1988; Alberts 

et al., 2005; Hoffman, 2011), and the amounts of time spent grooming in different seasons 

were similar to, but more constrained than, those observed in De Hoop baboons (Hill et al., 

2003). 

The behavioural patterns exhibited by KK troop on days during the study were not 

unlike those observed in other troops. Baboons at Amboseli (Altmann and Altmann, 1970), 

and elsewhere on the Peninsula (Hall, 1962; Davidge, 1978) have also been shown to 

concentrate resting and social activity in the early hours of the morning and latter part of the 

afternoon and into the evening. Conversely, feeding and walking comprise smaller 

percentages of hours in the early morning and late afternoon, but are the dominant activities 

in the hours in between. Like other Peninsula troops studied previously (Hall, 1962; Davidge, 

1978), and unlike certain other primates (Huang et al., 2003), KK troop did not exhibit two 

feedings peaks during the day. 
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Diet and nutritional rewards 

KK troop’s diet was dominated by plant material, with marine animal foods comprising only 

very small percentages during all four seasons. This high plant-to-animal food ratio is typical 

of baboons as has been demonstrated through both direct observation (Altmann and Altmann, 

1970; Harding, 1976; Post, 1982; Whiten et al., 1987, 1991; Okecha and Newton-Fisher, 

2006), and stable isotope analysis (Codron et al., 2006). There have however been cases 

where baboon diets have been comprised largely of animal tissues over short periods (up to a 

few days), but these are exceptions rather than the norm. Where baboons have fed extensively 

on animal foods, the change in diet composition has occurred in response to extraordinarily 

high abundance of animal foods, typically for only brief periods (Hamilton et al., 1978). In 

light of the abundance, and sessile nature, of marine intertidal foods consumed by baboons, it 

seems likely that there is some other factor limiting the extent to which the baboons exploit 

these organisms. 

The plant component of KK troop’s diet was in turn dominated by above-ground plant 

foods. Subterranean foods are generally not thought to be preferred foods due to the high 

processing costs associated with exploitation (Altmann, 1998; Alberts et al., 2005; 

Wrangham et al., 2009). It is for this reason that the size of the subterranean component of 

baboons’ diets is seen as an indicator of food availability (or, conversely, nutrient stress) in 

baboon troops’ home ranges. Baboons in harsh environments tend to feed on more 

subterranean foods than their counterparts in more favourable habitats (Whiten et al., 1987) 

and the degree of exploitation of subterranean foods increases during periods of food scarcity 

(Alberts et al., 2005). As a percentage of the total diet, the subterranean component of KK 

troop’s diet is similar to that observed in another Peninsula troop (Davidge, 1978), and 

markedly smaller than that observed in two troops in the Drakensberg (Whiten et al., 1987). 

Although not statistically significant, there was some seasonal variation in the percentage of 

KK troop’s diet comprised of subterranean foods. This has been shown to be the case in two 

other Peninsula troops (Davidge, 1978; Van Doorn et al., 2010), but the pattern reported here 

differs from those reported by the above-mentioned authors; KK troop fed on subterranean 

foods more during the warm, dry months of summer and autumn. This difference is likely a 

result of the changes in nutrient availability within a troops’ home range brought about by the 

presence of human-derived foods (in the case of the troop studied by Van Doorn et al., 2010) 

and abundant, nutrient-rich foods derived from alien tree species (in the case of the troop 

studied by Davidge, 1978). 
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The seasonal differences in diet composition suggest that, for KK baboons, fulfilling 

nutrient- and energetic requirements is more difficult in summer and autumn than in winter or 

spring. This could be related to seasonal variation in availability of different foods, or to 

fluctuation in quality of foods that are available and consumed. In light of baboons’ 

preference for foods with relatively high protein contents (Whiten et al., 1991; Barton and 

Whiten, 1994), and their tendency to forage selectively to maintain constant proportional 

daily intake of protein (Johnson et al., 2013), I investigated how the protein content varied in 

foods consumed by the KK troop in each season. The one plant food that was much richer in 

protein than all other plants foods, and also richer in protein than marine animals, was 

Leucodendron spp. seeds. There was however marked seasonal variation in the protein 

content of the seeds. In light of this, I determined the proportions of the troop’s diet 

comprised of Leucodendron spp. seeds during each season and found that the ranks (relative 

to other seasons) of dietary proportions comprised of these seeds matched the variation in 

their protein contents very closely. 

Like lumped terrestrial foods, marine animals did not exhibit seasonal variation in 

protein content per unit mass. This does not necessarily mean that the nutritional rewards 

offered by these foods would not vary. In fact, it is highly likely that the nutrient yield per 

unit time and energy expended processing marine animals should vary with season due to 

changes in condition related to spawning (Branch, 1974; Van Erkom Schurink and Griffiths, 

1991; Hodgson, 2010). Seasonal changes in the ratio of the soft tissue mass-to-length were 

evident in marine invertebrates consumed by the baboons, but differences were not 

significant. It seems highly likely that this is a result of small sample sizes. Ideally, such a 

comparison should be done with larger sample sizes from both coasts (sampled separately) as 

the timing of spawning may vary markedly over short distances (Van Erkom Schurink and 

Griffiths, 1991). 

Although tissues of marine invertebrates are richer in protein than most of the 

baboons’ terrestrial foods, these foods might not represent a suitable food for extensive 

exploitation (availability aside). Like various fynbos and strandveld plants (Glyphis and 

Puttick, 1988; Coetzee et al., 1997), certain marine invertebrates produce (or accumulate) 

chemical compounds that act to discourage ingestion of these organisms by consumers 

(Bryan et al., 1997; Gray et al., 1998; Kvitek and Bretz, 2005; Sotka et al., 2009). In some 

cases, the compounds in question are alkaloids (Pathirana and Andersen, 1986; McClintock 

and Baker, 1997; Zimmer and Ferrer, 2007), which may have profound effects on consumers. 

The nature and severity of the effects are however dependent on the alkaloid in question 
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(McClintock and Baker, 1997; Assmann et al., 2000; Kem and Soti, 2001; Kem et al., 2006), 

and the amount consumed (Koleva et al., 2012). Thus, the presence of alkaloids in the tissues 

of the marine invertebrates consumed by the baboons could limit their exploitation of these 

foods to some extent. This is not necessarily the case however, as the alkaloids in question 

could be among the less harmful compounds belonging to this group. 

 

Conclusion 

All behavioural indicators suggest that baboons of KK troop face significant challenges in 

fulfilling their nutritional- and energetic requirements relative to other Peninsula troops and 

troops in other parts of southern Africa, and that the severity of nutrient stress varies 

seasonally. This implies that, unlike exploitation of human foods for example, inclusion of 

marine foods in baboons’ diets does not release them from the ecological constraints of 

feeding on relatively nutrient-poor foods. It is plausible that this is a result of how seldom KK 

baboons consume marine foods, which in turn begs the question of whether there is some 

factor, or suite of factors, that is limiting exploitation of marine foods by natural-foraging 

Peninsula baboons. 
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CHAPTER 3  

 

Stable carbon and nitrogen isotope ratios of 

faeces and hair of Cape Peninsula baboons  
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ABSTRACT 

Despite the novelty of the behaviour, exploitation of marine foods by Cape Peninsula chacma 

baboons has not previously been studied in detail. Behavioural data presented in Chapter 2 

indicate that marine food comprises only a small proportion of natural-foraging Peninsula 

baboons’ diet.  These data were however collected through only four months of observation, 

and were recorded at the level of the troop rather than the individual due to permit 

restrictions.  In this chapter, I present estimates of KK troop’s diet composition based on 

stable carbon- and nitrogen isotope ratios of faeces from unknown individuals, and hair from 

seven different sub-adults and adults of each sex. I compared these isotope ratios to those of 

hair from other Peninsula troops to assess the efficacy of this method in differentiating 

animals and their diets within the same population. Faecal δ
13

C- and δ
15

N values of animals 

from the non-raiding troop ranged from -29.3‰ to -25.6‰, and from 0.9‰ to 6.3‰, 

respectively. Faecal δ
15

N values were positively correlated with a composite measure of 

marine foraging calculated for the dietary integration period. Mean (± SD) δ
13

C and δ
15

N 

values for hair from the non-raiding troop were -21.7 (± 0.2)‰ and 4.5 (± 0.6)‰ 

respectively. Output from SIAR models based on isotope ratios of hair and faeces indicated 

that the diet of these baboons is dominated by C3-terrestrial plants, and that marine foods 

comprise only a small percentage (< 10%). These results are in accordance with estimates 

based on behavioural observation. Adult individuals of the same sex from different troops 

differed in terms of carbon- and nitrogen isotope values—animals with access to human 

foods were enriched in 
13

C and 
15

N relative to non-raiding animals. This indicates that human 

foods are typically enriched in 
13

C and 
15

N relative to natural plant foods. Results presented 

therefore suggest that stable isotope analysis represents a viable method for quantifying 

marine food use by Peninsula baboons, but only in non-raiding animals. 

  



77 

 

  



78 

 

INTRODUCTION 

The method most commonly used in studies of baboon diet, and which might be used in a 

survey of marine food exploitation by baboons and other primates, is direct behavioural 

observation (e.g. Davidge, 1978; Post, 1982; Byrne et al., 1993; Bronikowski and Altmann, 

1996; Okecha and Newton-Fisher, 2006; Van Doorn et al., 2010; Johnson et al., 2013). This 

method requires considerable time and effort to implement however and, depending on the 

sampling protocol, may be contingent on habituation of the animals to close human presence 

(e.g. Wrangham and Waterman, 1981; Cords, 1986; Krishnamani, 1994; Fairgrieve and 

Muhumuza, 2003; Dew, 2005; Yiming, 2006). In certain contexts, habituating primates to 

close human presence and spending large amounts of time with them is difficult, impossible, 

or ill-advised, either because environmental factors preclude such protocols, or due to ethical 

considerations (Jack et al., 2008; Williamson and Feistner, 2011; Gruen et al., 2013). The 

latter may be seen as just cause for rejection of research permit applications, or restriction of 

research-related activities, by local conservation authorities (as was the case here). 

Restrictions imposed by local conservation authorities meant that data for Chapter 2 were 

collected over relatively short, discrete periods, at the level of the troop rather than the 

individual. In studies where this is the case, data collected through alternative approaches 

may prove hugely informative (Deblauwe and Janssens, 2008; McGrew et al., 2009). One 

such approach, which has been used in dietary studies of terrestrial animals that consume 

marine foods elsewhere, is stable isotope analysis (Hobson and Sealy, 1991; Stapp and Polis, 

2003; Balasse et al., 2005). 

Stable isotope analysis is useful in dietary studies because isotope ratios of animal 

tissues reflect those of their diets (DeNiro and Epstein, 1978, 1981). This is not to say that 

diet- and tissue isotope ratios are always the same, but rather that isotopic enrichment of a 

given tissue (or lack thereof) is consistent across conspecific individuals on the same diet 

(DeNiro and Epstein, 1978, 1981; Hobson et al., 1996; McCutchan et al., 2003; Sponheimer 

et al., 2003b; c). Provided the appropriate fractionation factor is known, proportional 

contributions of different foods to an animal’s diet may be inferred from isotope ratios of 

those foods and a tissue sample collected from the animal in question (Caut et al., 2008; Bond 

and Diamond, 2011; Phillips, 2012). 

The isotope ratios most commonly analysed in dietary studies are those of carbon (
13

C 

and 
12

C) and nitrogen (
15

N and 
14

N), which are often used in concert in such studies (e.g. 

Minami et al., 1995; Hilderbrand et al., 1996; Abend and Smith, 1997; Polischuk et al., 2001; 
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Kurle and Worthy, 2002; Estrada et al., 2005; Sare et al., 2005; Dalerum et al., 2009). These 

same isotopes have been used to determine the extent of marine food exploitation in a variety 

of terrestrial consumers (Hobson et al., 1999; Szepanski et al., 1999; Stapp and Polis, 2003; 

Ben-David et al., 2004), but not primates. 

Both biologically active- and inert tissues have been used in isotopic studies of 

primate diet (for reviews see Crowley, 2012; Sandberg et al., 2012). When dead specimens 

cannot be obtained, hair and faeces are favoured as materials for analysis (Schoeninger et al., 

1997; Codron et al., 2006, 2008; Sponheimer et al., 2006a; O’Regan et al., 2008; Oelze et al., 

2011) because they can be harvested non-destructively. This is an important consideration in 

light of ethical concerns implicit in primate studies, and the uncertain conservation status of 

many primates (Mittermeier et al., 2005). As in other animals, stable isotope ratios of primate 

hair (Loudon et al., 2007; Nakashita et al., 2013) and faeces (Blumenthal et al., 2012) have 

been shown to reliably reflect dietary isotopic composition. 

Hair (which is a biologically inert tissue; Martínez del Rio et al., 2009), reflects 

isotope ratios of animal diet at the time of production (Sponheimer et al., 2003b; c), and 

provides remarkable temporal resolution in dietary reconstruction (Ayliffe et al., 2004; West 

et al., 2004). This property has facilitated the use of serial analysis of hair segments to 

investigate dietary switches through time in primates (Oelze et al., 2011). This approach may 

be hugely informative, but the reliability of conclusions drawn from serial analyses is 

contingent on a good understanding of hair growth patterns and growth rates in the study-

animal, and the classification of hairs according to growth phase (Schwertl et al., 2003). 

Another hair isotope-based approach to diet reconstruction (which may be used when the 

above-mentioned criteria are not met) involves inference of diet composition from isotope 

ratios of homogenised hair samples (Schoeninger et al., 1997, 1999; Sponheimer et al., 

2006a; O’Regan et al., 2008). This approach does not provide the same temporal resolution 

as serial analysis of hair segments, but allows for inference of diet integrated over longer 

periods (the duration of which is determined by hair growth rate and length; O’Connell and 

Hedges, 1999). 

An alternative to serial analysis in studies of dietary shifts in animals is analysis of 

samples of the same material collected at different points in time (Dalerum and Angerbjörn, 

2005). This is however only possible with material that can be collected non-destructively, 

such as hair (Mizukami et al., 2005b), blood (Hobson and Stirling, 1997) and faeces 

(Djagoun et al., 2013). Collection of faecal samples is not only non-destructive, but may also 

be carried out non-invasively (Codron et al., 2006), and, therefore, with relative ease 
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(Sponheimer et al., 2009). Importantly, the period of integration reflected in faeces is 

determined by gut throughput time, and is short (up to several days in medium-sized to large 

primates) (Clemens and Phillips, 1980; Lambert, 1998; Sponheimer et al., 2009). Analysis of 

faecal samples collected during different months has therefore been used to investigate 

seasonal shifts in proportional composition of primate diets (Codron et al., 2006, 2008). 

Stable isotope analysis could therefore be used to investigate exploitation of marine foods by 

primates, but the results would only prove truly informative if the marine signal in hair or 

faecal matter is fairly strong (i.e., the animals consume a substantial amount of marine food), 

and if there is considerable isotopic variation among the baboons’ marine and terrestrial 

foods (Phillips and Gregg, 2001; Phillips, 2012). The latter condition is expected to be met in 

the system at the marine–terrestrial interface, as terrestrial plants and marine organisms in 

many regions are known to differ in terms of either 
13

C/
12

C ratios or 
15

N/
14

N ratios, or both 

(Sealy et al., 1986, 1987). The same is not necessarily true of the former however, as 

behavioural studies suggest that marine foods comprise only small percentages of Peninsula 

baboons’ diets (Davidge, 1978; Chapter 2 of this thesis). 

In light of the above discussion, the efficacy of isotopic analyses of faeces and hair of 

baboons, for determining whether or not baboons in coastal areas exploit marine foods, 

should be assessed. Should this prove to be the case, this method could potentially be used to 

determine the extent of marine food exploitation, and both annual and seasonal variation at 

the individual, troop and population level. Stable isotope analysis could therefore possibly be 

used to investigate differences between the sexes. Such differences warrant investigation, as 

males of various other primate genera consume more meat than their female counterparts 

(Fedigan, 1990; Watts and Mitani, 2002). Research to date has shown that baboons do not 

display consistent, marked inter-sex differences in animal-tissue consumption, but where 

there are differences males consume more animal tissue than females  (Harding, 1973; Strum, 

1975; Hausfater, 1976; Rhine et al., 1986). 

 

Aims and predictions 

The main aim of this study is to determine whether or not stable isotope analysis provides a 

viable alternative, or complimentary, source of data to behavioural observation in studies of 

marine food exploitation in primates. This will be done by estimating the extent of marine 

food exploitation by natural-foraging Peninsula baboons using stable isotope analysis, and 

then comparing the resultant estimates to those derived from behavioural observations. The 

secondary aim of the study is to investigate how documented dietary differences between 
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Cape Peninsula baboon troops are manifested in hair isotope ratios, if at all. In light of 

findings reported elsewhere (see above), I predict that: 

1. Stable isotope ratios of baboon hair and/or faeces will reflect exploitation of marine 

foods by a natural-foraging Peninsula troop. 

2. The ranges of values for seasonal marine food intake estimated from stable isotope 

ratios will include estimates of proportional intake based on behavioural observations. 

3. Stable isotope ratios of Peninsula baboon hair will reflect documented differences in 

dietary ecology of Peninsula troops, and between sexes within troops. 

 

METHODS 

See Chapter 1 for a detailed description of the study site. 

Study animals 

The main study troop for this research was the Kanonkop (KK) troop (see Chapter 2 for a 

detailed description of KK troop). With the help of field assistants, I obtained hair- and faecal 

samples from this troop, and collected samples of foods consumed by this troop from within 

the troop’s home range. 

I also obtained hair samples from the Buffels Bay (BB), Da Gama (DG) and Main 

Tokai 1 (MT1) troops, either directly through the method described below, or indirectly from 

autopsies performed by other members of the University of Cape Town Baboon Research 

Unit. The above-mentioned troops inhabit home ranges spread across much of the Peninsula 

(see Fig. 3.1; the baboons that comprise MT1 troop were members of TK troop prior to a 

fission event), and each one differs from the others in terms of the amount of time that they 

spend in human-modified habitats (Hoffman and O’Riain, 2012a). 

BB inhabits a 5.6 km
2
 home range on the eastern side of the CoGH section of the 

TMNP, which overlaps with KK troop’s home range to some extent. The vast majority of 

their home range is covered by untransformed habitat, but BB does make extensive use of the 

human-modified habitat within its home range (Hoffman and O’Riain, 2012a). Like KK, the 

BB troop is known to marine forage, but unlike KK, BB obtain human foods on an almost 

daily basis (Lewis unpublished data). They do this by raiding picnics or stationary vehicles, 

which routinely visit the tourist facilities within their home range (Hoffman, 2011). 
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DG’s home range covers an area of 10.6 km
2
, approximately 15 km NNW of KK 

troop’s home range (see Fig. 3.1). This troop spends almost half of its time in human-

modified habitats and is known to aggressively raid human dwellings on a regular basis 

(Hoffman and O’Riain, 2012a; Kaplan, 2013). The troop’s current home range does not 

 
Fig. 3.1. Three-dimensional map of the Cape Peninsula showing home ranges of troops studied 

by Hoffman & O’Riain (2012 a; used with the first author’s permission). Home ranges belonging 

to troop’s mentioned in the text are labelled; asterisks denote troops that were herded by “baboon 

monitors”; BB = Buffels Bay, DG = Da Gama Park, KK = Kanonkop, TK = Main Tokai. 

TK* 

DG* 

 BB 

KK 
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extend to the coast, but there is no physical barrier (e.g. hard development) that would 

impede the troop’s movement to the intertidal zone to the west of their home range. 

MT1 troop occupies a 9.5 km
2
 home range in the Tokai area, approximately 25 km N 

of KK troop’s home range (in the northernmost area on the Peninsula still occupied by 

baboons; see Fig. 3.1). These baboons, which are geographically isolated from the other 

study troops, spend the vast majority of their time in agricultural land at the urban edge and 

are known to raid on a regular basis (Hoffman and O’Riain, 2012a).  Like DG troop, MT1 is 

not prevented from accessing coastal land by any physical barriers. 

 

Sample collection and preparation 

Faeces 

With the help of field assistants, I collected faecal samples from the Kanonkop troop during 

five discrete periods across all four seasons between June 2009 and June 2010 (behavioural 

data were collected simultaneously for a companion study). We collected faecal samples 

from unknown individuals at various sleeping sites in each season. Only scats which had 

been voided on the morning of sampling were collected. We froze scats within two hours of 

collection and stored them at -20°C until preparation for analysis. 

 

Dietary items 

We collected three to five samples of all identifiable marine and terrestrial foods which the 

Kanonkop baboons ingested on more than two occasions during each season. We collected 

foods from as wide a variety of locations as possible within the troop’s home range in order 

provide some measure of the variation in isotopic signatures of the baboons’ main food items 

through space. In each case, we collected only the structure from which the baboons derived 

their food (e.g. flower or cone). Following collection we placed the terrestrial plant samples 

in paper bags, and suspended these in a well-ventilated area in order to prevent rotting, and to 

partially air-dry the samples at the field site. We placed marine invertebrate samples in sealed 

plastic bags in a -20°C freezer on the day of collection. 

In the laboratory, I processed both terrestrial and marine samples, such that only those 

tissues which were ingested by the baboons were included in the samples for analysis 

(following Rothman et al., 2008). I shredded desiccation-resistant plant tissues, such as 

Leucodendron sp. seeds and Carpobrotus sp. leaves, using a commercial blender (Waring ®, 

Stamford, USA). I dried plant- and faecal samples in a drying oven at 60°C (following 

Codron et al., 2006) and freeze-dried marine samples at -80°C, and then ground each sample 
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to a homogeneous powder using a Wiley Mill Standard Model No. 3 (Arthur H. Thomas Co., 

Philadelphia, USA) and a custom-built hammer mill (United Scientific Pty. Ltd., Western 

Cape, South Africa). 

 

Hair sampling 

I collected hair samples from adult and sub-adult baboons of three Cape Peninsula troops 

(Buffels Bay, Kanonkop and Main Tokai 1) between 2 November 2011 and 20 March 2012 

(after all behavioural data had been collected). I collected samples from at least five females 

in all three troops, and from at least five males in the Kanonkop and Main Tokai 1 troops. As 

the Buffels Bay troop was a single-male troop at the time, I collected only a single sample 

from a male in this troop. In order to avoid pseudoreplication within the KK, MT1 and BB 

(female) samples, I collected samples from animals of both sexes (and from females in the 

case of BB) with the most distinctive features (e.g., scars and ear notches) that allowed for 

swift identification without the need for close observation. Also, I only moved to within 

shooting distance immediately prior to launching the dart, and the target animal (and the 

whole troop on most occasions) moved away from me after the dart had struck an animal.  

This approach minimised the possibility of further habituating the KK troop and may even 

have made them more cautious of close human presence. 

I collected hair samples by launching blunt wooden darts smeared with glue from a 

simple blow-pipe (1.5 m piece of 15 mm-diameter copper pipe) into the target animal’s 

pelage from a distance of 10–15 m (following Améndola-Pimenta et al., 2009). Although I 

followed Améndola-Pimenta et al.'s (2009) methods, I made two important modifications to 

the dart design recommended by these authors. Firstly, instead of coiling thread around the 

front end of the dart, I affixed a 12 mm metal “washer” to the dart 20 mm from the tip using 

Super Glue (Glue Devil, Johannesburg; see Fig. 3.2). This allowed for a greater area to be 

 
Fig. 3.2. Diagram of dart used to collect hairs from baboons on the Cape Peninsula, 

South Africa. Scale bar = 1 cm. 

 
metal washer 

wooden shaft 

cardboard flight 

trapping glue 
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smeared with glue, without hampering the movement of the dart through the blow-pipe. 

Secondly, I replaced the wool stabilisers at the rear of the dart with a small cardboard cone, 

which I attached using Scotch® tape (3M South Africa Pty Ltd.). This cardboard “flight” 

caused less drag in the blow-pipe, thus allowing the dart to be launched with greater velocity, 

whilst still stabilising the dart in flight. 

As recommended by Améndola-Pimenta et al. (2009), I used glue from a rodent trap 

(Trapper
RT

 Ltd., Bell Laboratories, Inc. Madison, USA) to coat the front end of the darts. 

While in the field, I stored the rodent trap in a rigid plastic cooler box with a plastic “ice 

brick” which had been in a -20°C freezer for at least 12 h beforehand. I did this because the 

viscosity of the glue, and thus its efficacy in retaining hairs, decreased, when it was exposed 

to relatively high ambient temperatures (> ~20°C). For this reason, I launched the dart as 

soon as possible after coating the front end with glue. 

Upon being struck by a dart, the target baboon typically ran a short distance (10–20 

m), before pausing to remove the dart using its hands or feet and then dropping the dart to the 

ground. Upon seeing the baboon drop the dart, I went and retrieved the dart, and with it, the 

hair sample. The number of hairs retained by a single dart ranged from 1 to 40 (mean = 11.8, 

SD = 10.3, n = 33). I placed each dart, with attached hairs, in a zip-seal plastic bag, which I 

then placed in a freezer on the day of collection. I stored samples at -20°C until preparation 

for analysis. 

In the laboratory, I removed hairs from each dart by pouring a small amount of 

mineral turpentine onto the end of the dart and then gently pulling the hairs from the glue 

using forceps. I performed a simple experiment which showed that δ
13

C and δ
15

N values of 

hairs which had been treated with glue and mineral turpentine, and control hairs, were not 

significantly different (see Appendix B). Where more than 10 hairs had been collected from a 

given individual, I took a random sub-sample of 10 hairs from that individual for stable 

isotope analysis. I wiped down each hair multiple times with 95% ethanol and allowed it to 

dry (following Macko et al., 1999; West et al., 2004). I examined all hairs under a 

microscope to ensure that all surface debris had been removed, and then cut hairs into 2–3 

mm sections with surgical scissors (Moritz et al., 2012) and pooled sections from the same 

individual. Thus, I obtained a homogenised hair sample for each individual for analysis. 

 

Stable isotope analysis 

I weighed out sub-samples of the requisite mass of baboon hair (~0.5 mg), faeces (~2.0 mg) 

and foods (~2.9 mg for most plants and ~0.5 mg for marine invertebrates) into tin cups, to an 
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accuracy of 1 microgram on a Sartorius micro balance. I then squashed the cups using forceps 

to enclose the sample and to reduce the amount of air that was included in the analysis. The 

samples were then combusted in a Flash EA 1112 series elemental analyser (Thermo 

Finnigan, Italy) and the resultant gases passed to a Delta Plus XP IRMS (isotope ratio mass 

spectrometer) (Thermo electron, Germany), via a Conflo III gas control unit (Thermo 

Finnigan, Germany), for stable isotope analysis. Appropriate in-house standards, all of which 

have been calibrated against IAEA (International Atomic Energy Agency) standards, were 

used to determine precision of the analyses. Repeated analyses of chocolate, valine and 

sucrose standards (for analyses of baboon hair and faeces, and marine food samples) and 

lentil, Merck gel and sucrose standards (for analyses of terrestrial plant samples) yielded 

mean δ
13

C and δ
15

N values with standard deviations less than 0.25 ‰ in all cases. 

I present 
13

C/
12

C and 
15

N/
14

N ratios in standard delta (δ) notation in parts per thousand 

(i.e., per mil, ‰), relative to the PeeDee Belemnite (PDB) standard for carbon and 

atmospheric N2 for nitrogen. The δ values are derived from the expression: 

𝛿𝐻𝑋 = ((
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
) − 1) × 1,000 , 

where H is the atomic mass of the heavier stable isotope of element X, and R represents either 

the 
13

C/
12

C or 
15

N/
14

N ratio of the material indicated. Stable isotope ratio mass spectrometry 

was thus used to determine δ
13

CPDB and δ
15

NAIR values (hereafter referred to “δ
13

C” and 

“δ
15

N” respectively), and also yielded %C and %N values for both foods and faeces. 

 

Statistical analyses 

I used a parametric analysis of variance to test for significant differences between δ
13

C values 

of faeces collected from Kanonkop baboons in different seasons. The standard deviations of 

δ
15

N and %N values of faeces collected in different seasons were significantly different 

(δ15N: F3,140 = 8.6, p < 0.01; %N: F3,140 = 7.5, p < 0.001), so I used Kruskal-Wallis rank sum 

tests to test for differences in faecal δ
15

N and %N values between seasons. In both cases, 

these tests indicated that there were significant differences between faeces collected in 

different seasons, so I performed Wilcoxon’s rank sum tests (with a holm correction applied 

to the p-values) to determine which seasons’ faeces differed. 

In order to determine whether or not foods collected in different years could be 

combined in order to increase sample sizes, I performed Wilcoxon rank sum tests on δ
13

C and 

δ
15

N values of samples of Arctotheca calendula and Pterocelastrus tricuspidatus (both 

terrestrial plants) and Mytilus galloprovincialis (a marine mussel) collected during 
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corresponding seasons in different years. I used Wilcoxon- (where samples were collected 

during two seasons) and Kruskal-Wallis rank sum tests (where samples were collected during 

more than two seasons) to test for significant isotopic differences between tissues of all 

species that were collected during more than one season (n = 10). I also performed Wilcoxon 

rank sum tests for paired samples to determine whether or not different tissues of Mimetes 

cycullatus (flowers and seeds) and Pterocelastrus tricuspidatus (flowers and leaves) collected 

during the same season in the same year differed in terms of carbon or nitrogen isotope ratios. 

Where these tests indicated that isotopic differences across years and seasons, and between 

tissues were not statistically significant I lumped samples accordingly. Following this, I 

grouped species by habitat and then by photosynthetic pathway (i.e., terrestrial C3, terrestrial 

C4 or marine) for further analysis. 

I investigated relationships between marine foraging and δ
13

C, δ
15

N and %N values in 

order to determine whether or not marine food input had a discernible effect on faecal isotope 

ratios. Due to the sporadic nature of marine foraging (see Chapters 2 and 4), these analyses 

require a reliable estimate of the period of dietary integration for faeces. In the absence of 

data from an isotope-based controlled feeding study, the best proxy for this is gut throughput 

time, which is 26.8–96.8 h in baboons (Clemens and Phillips, 1980). Thus, I determined the 

average number of animals per marine foraging count, and the total duration of marine 

foraging bouts, during the period 26.8–96.8 h prior to the median time of faecal sample 

collection on a given day. I then multiplied these two values to determine a marine foraging 

index (MFIf) for each faecal sample. I used Spearman rank correlations to test for 

relationships between MFIf, and mean δ
13

C, mean δ
15

N, and mean %N of faecal samples with 

the same MFIf across all four seasons, and during spring, summer and autumn only. The 

results for the winter samples could not be analysed in this manner due to the small number 

of samples for which the full complement of behavioural data were available. If only a single 

sample with a given MFIf value was collected during a season, I excluded that sample from 

the analyses. 

I used the Stable Isotope Analysis in R package (SIAR v. 4.2) to run models which 

provided estimates of the proportional contributions of different food groups to the diet of 

KK baboons. The initial set of models incorporated isotope ratios of faeces and mean isotope 

ratios of different food groups (corrected for trophic enrichment), collected in different 

seasons. I included only the isotope ratios of food plant and animal species that were 

consumed in a given season in the model input, grouped as described above. Hence, foods 

derived from C4 plants were excluded from the models of spring and summer diet as the 



88 

 

baboons were not observed eating these foods. I verified that these groups were in fact 

significantly different using a K nearest-neighbour randomisation test (Rosing et al., 1998). 

Due to the uncertainty regarding the appropriate trophic enrichment factor (TEF) value for 

use in the model, I ran four versions of the model with four different TEF values (three 

different, plausible TEF values from the literature, and an average of these values). The 

values from the literature were those determined for large mammalian herbivores 

(Sponheimer et al., 2003b; d), pigs (Hare et al., 1991), and gorillas (Blumenthal et al., 2012). 

In this way, I was able to test for effects of TEF variation on estimated dietary proportions. 

To test for differences between hair isotope values of KK males and females, I ran 

Wilcoxon rank sum tests for independent samples on δ
13

C and δ
15

N values of hairs from 

animals of the two sexes. I then used Stable Isotope Analysis in R package (SIAR v. 4.2) to 

run a set of models which provided estimates of the proportional contributions of different 

food groups to the diet of males and females. This set of models incorporated isotope ratios 

of hair samples (divided by sex) and foods consumed by the baboons throughout the year. As 

with the faeces-based models, I ran four versions of the model, each of which incorporated a 

different set of TEF values for δ
13

C and δ
15

N values. The values that I incorporated into the 

models were those determined for large mammalian herbivores (Sponheimer et al., 2003b; c), 

pigs (Nardoto et al., 2006) and macaques (Nakashita et al., 2013) in hair-based models. 

Having run models which did not incorporate prior information regarding dietary proportions, 

I ran a second set of models which included prior information based on behavioural 

observations as parameters. 

Finally, I investigated variation in hair isotope values of females and males from 

different Peninsula troops. I used Kruskal-Wallis rank sum tests to test for inter-troop 

differences in hair δ
13

C and δ
15

N value of female baboons. Females differed in terms of both 

isotopes, so I then performed pair-wise comparisons using Wilcoxon’s rank sum tests (with a 

Holm correction applied to the p-values) to determine which troops differed from each other. 

As I was able to obtain sufficient samples for statistical analysis from males of only two 

troops, I used Wilcoxon rank test for independent samples to test for inter-troop differences 

in hair δ
13

C and δ
15

N of male baboons. I then also used Wilcoxon rank sum tests for 

independent samples to test for differences between δ
13

C and δ
15

N values of males and 

females from MT1 troop. 
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RESULTS 

Stable isotopes of Kanonkop foods 

There was some inter-annual and inter-seasonal variation in isotope ratios of both marine and 

terrestrial baboon foods, but none of the differences between foods of the same type were 

significant (Table 3.1). The mean δ
13

C value of P. tricuspidatus flowers was 3.3‰ greater 

than that of leaves, and this difference was statistically significant (V = 21, nleaves = 6, nflowers 

= 6, p < 0.05). The flowers and leaves of P. tricuspidatus did not differ in terms of δ
15

N 

however, and neither did Mimetes cycullatus flowers and seeds, in terms of either δ
13

C or 

δ
15

N values. Food groups based on habitat and photosynthetic pathway were isotopically 

distinct across all four seasons and also within all seasons (K nearest neighbour 

randomisation p < 0.05 in all cases). 

 

Table 3.1. δ
13

C, δ
15

N and %N values of baboon foods collected during different seasons in the 

Cape of Good Hope section of the Table Mountain National Park
1
 

    δ
13

C (‰)  δ
15

N (‰)  %N 

Season Food group n  Mean SD  Mean SD  Mean SD 

All C3 293  -27.1 1.7  1.1 3.3  1.8 2.3 

 C4 14  -13.6 0.6  0.3 1.6  1.0 0.5 

 Marine 55  -13.8 2.2  8.3 1.2  9.2 1.5 

            

Winter C3 214  -27.3 1.7  1.2 3.6  2.0 2.6 

  C4 14  -13.6 0.6  0.3 1.6  1.0 0.5 

 Marine 49  -14.0 2.3  8.2 1.1  9.1 1.5 

            

Spring C3 175  -27.3 1.7  1.6 2.9  2.2 2.8 

 Marine 49  -14.0 2.3  8.2 1.1  9.1 1.5 

            

Summer C3 162  -27.0 1.7  1.2 2.9  2.1 2.9 

 Marine 55  -13.8 2.2  8.3 1.2  9.2 1.5 

            

Autumn C3 151  -27.0 1.7  0.8 3.0  2.2 3.0 

 C4 10  -13.9 0.5  -0.5 1.1  0.7 0.3 

 Marine 55  -13.8 2.2  8.3 1.2  9.2 1.5 

1
n = number of samples included in food group; SD = standard deviation around the mean. 
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Kanonkop faecal isotopes 

The range of δ
13

C values for faeces across all four seasons was -29.3‰ to -25.6‰ (faeces 

with minimum and maximum values were collected in spring and summer respectively). 

There were significant differences between δ
13

C values of faeces collected during different 

seasons (F3, 140 = 35.0, p < 0.001). The δ
13

C values of faeces collected in autumn and summer 

were similar (mean ± SD = -27.0 ± 0.5‰ and -27.1 ± 0.4‰ respectively), and were higher 

than those of faeces collected in winter (p < 0.01 in both cases) and spring (p < 0.0001 in 

both cases). Faeces collected in winter were enriched in 
13

C relative to those collected in 

spring by 0.6‰ (p < 0.0001). The largest difference in mean δ
13

C values of faeces collected  

during different seasons was 1.1‰—the difference between autumn faeces and spring faeces 

(Table 3.2). 

 

Table 3.2. Mean δ
13

C, δ
15

N and %N values of baboon faeces collected during 

different seasons from a natural foraging troop in the Cape of Good Hope 

section of the Table Mountain National Park
1
 

Season n δ
13

C (‰)  δ
15

N (‰)  %N 

  Mean SE  Mean SE  Mean SE 

Winter 32 -27.52 0.07  4.07 0.31  3.36 0.04 

Spring 38 -28.06 0.09  3.08 0.13  1.86 0.09 

Summer 38 -27.13 0.07  2.46 0.13  3.12 0.09 

Autumn 36 -26.98 0.09  3.53 0.14  3.62 0.09 
1
n = number of faecal samples collected during each season; SE= standard error 

around the mean. 

 

Faecal δ
15

N values ranged from 0.9‰ to 6.3‰ across all four seasons (samples with 

minimum and maximum values were both collected in winter). Faeces collected in different 

seasons differed in terms of δ
15

N (χ
2

3 = 32.27, p < 0.001). Faeces collected in winter (mean 

δ
15

N = 4.1 ± 1.8‰) were enriched in 
15

N relative to those collected in spring (p < 0.01), 

summer (p < 0.001) and autumn (p < 0.05), by 1.0‰, 1.6‰ and 0.6‰ respectively (Table 

3.2). The δ
15

N values of faeces collected in autumn were significantly higher than those of 

faeces collected during spring (p < 0.05) and summer (p < 0.001), and the values of faeces 

collected in spring were higher than those of faeces collected in summer (p < 0.01). 

Faecal samples collected during different seasons differed in terms of nitrogen content 

(%N; χ
2

3 = 84.01, p < 0.0001). The nitrogen content of faeces collected in spring (mean %N 

= 1.9 ± 0.6%) was significantly lower than that of faeces collected in any other season (p < 

0.0001 in all three cases). Nitrogen comprised more than 3% of faeces collected in winter, 

summer and autumn, on average (Table 3.2). Winter faeces did not differ from summer or 
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autumn faeces in terms of %N, but autumn faeces were richer in nitrogen than summer faeces 

(p < 0.01). 

There were strong positive correlations between δ
15

N and MFIf of faeces collected in 

all four seasons (r = 0.81, n = 25, p < 0.001), and faeces collected in spring (r = 0.74, n = 8, p 

< 0.05), and autumn (r = 0.86, n = 7, p < 0.05; Table 3.3). Nitrogen content (%N) and MFIf 

were positively correlated in faeces collected in all four seasons (r = 0.51, n = 25, p < 0.01), 

and strongly positively correlated in summer faeces (r = 0.95, n = 7, p < 0.001; Fig. 3.3). 

 

Table 3.3. Spearman’s rank correlation coefficients for correlations between 

δ
13

C, δ
15

N and %N of baboon faeces, and MFIf (a composite measure of 

marine foraging) between 18.9 and 96.8 hours prior to faecal sample 

collection
1
 

Season n δ
13

C (‰) δ
15

N (‰) %N 

All seasons 25   0.32  0.81
**

  0.51
**

 

Spring 8 

7 

 - 0.33  0.74
*
  0.31 

Summer  0.7  0.49  0.95
**

 

Autumn 7  0.75  0.86
*
  - 0.46 

1
n = number of points included in correlation; MF = marine foraging; 

*
 

indicates significance at the 5% significance level; 
**

 indicates significance at 

the 1% significance level. 

 

Baboon faecal sample δ
13

C and δ
15

N values were markedly lower than those of 

marine foods, corrected for trophic enrichment, in all four seasons (Fig. 3.4). On average, the 

δ
13

C values of baboon faeces collected in different seasons were 12.9 – 13.8‰ lower than 

corrected values of marine foods, while faecal δ
15

NAIR values were 5.7 – 7.5‰ lower than 

those of marine food samples. Faeces were also depleted in 
13

C relative to C4 plant-derived 

foods—faecal samples collected in autumn and winter were depleted in 
13

C by 12.8‰ and 

13.6‰ respectively, relative to C4 plant-samples. Winter and autumn faeces were enriched in 

15
N relative to C4 plants, on average, but only by 2.2‰ and 2.4‰ respectively. The patterns 

of enrichment and depletion of faeces relative to C3 plants were less consistent than those 

mentioned above. Relative to C3 plants, faecal samples collected in winter were enriched in 

13
C by less than 0.1‰, whereas autumn faeces were enriched by 0.3‰. Faeces collected in 

winter and autumn were enriched in 
15

N by 1.3‰ and 1.2‰ respectively, relative to C3 foods. 

Summer faeces were enriched in 
13

C by just 0.1‰, and depleted in 
15

N by 0.3‰, relative to 

C3 plants. Spring faeces were slightly depleted in both 
13

C (δ
13

Cfaeces - δ
13

CC3 = -0.4‰) and 

15
N (δ

15
Nfaeces - δ

15
NC3 = -0.1‰), relative to C3 foods. 
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Diet based on faecal isotopes 

Models based on δ
13

C and δ
15

N values of baboon faecal samples indicate that across all four 

seasons, C3 plant-derived foods comprised the vast majority (88 – 100%) of KK baboons’ 

diets.  C4 plant-derived foods (when eaten), and foods obtained in the marine intertidal zone, 

made up only small percentages (0 – 10% and 0 – 11% respectively; Fig. 3.5). Models that 

incorporated different TEF values showed the same patterns, but differed in terms of the 

estimated percentages of each food type in the diet. The maximum difference between upper 

extremes of 95% credibility intervals from models run using different TEF values was 8% 

(between estimated C4 dietary contributions in autumn), and the maximum difference 

between lower extremes was 6% (between estimated C3 dietary contributions in summer). 

Due to the uncertainty regarding appropriate TEF values for use in models of baboon diet, 

further results in text will refer to the models which incorporated the averages of the TEF 

 
 

Fig. 3.3. Values of δ
13

C, δ
15

N and %N values, and MFIf (see Methods) of faecal samples collected 

from a natural foraging troop of chacma baboons on the Cape Peninsula, South Africa during 

different seasons. Values on the vertical axis are mean values ± SD for faeces collected on different 

days. Significant Spearman rank correlation coefficients are displayed; All = all seasons, Sp = 

spring, Su = Summer, A = Autumn; 
*
indicates significance at the 5% significance level; 

**
indicates 

significance at the 1% significance level. 
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Fig. 3.4. Values of δ
13

C and δ
15

N of faecal samples (grey circles) collected from a natural foraging 

troop of chacma baboons on the Cape Peninsula, South Africa during different seasons. Mean values 

± 2 SD for food items (corrected for trophic enrichment; black symbols) consumed by the baboons 

are shown. Graphs in the same column present values for samples collected during the same season 

and graphs in the same row present values calculated using the same trophic enrichment factor. 

Trophic enrichment factors used were those calculated by Sponheimer et al., (2003 a; c) for large 

mammalian herbivores (Spon); Hare et al., (1991) for pigs (Hare); and Blumenthal et al., (2012) for 

gorillas (Blum); and an average of all of the above (SHB). F = faeces, C3 = terrestrial C3 plant 

foods, C4 = terrestrial C4 plant foods, Mar = marine foods. 
 

values calculated by Sponheimer et al., (2003 a; c), Hare et al., (1991) and Blumenthal (et al., 

2012).  

The results of the model that incorporated the average TEF values indicated that 

baboons’ diets were dominated by C3 plant-derived foods in all four seasons, but there was 

some variation in the dietary contributions of different foods across seasons (Fig. 3.5). The 

percentages of winter and autumn diets comprised of different foods were very similar, as 

were those of spring and summer diets. The models indicate that the baboons certainly ate 

marine foods in winter and autumn, and that these foods may have comprised up to 9% of the 

diet  in  both  seasons  (CI95% for marine invertebrates: 2  –  9%  and  3  –  9%  respectively).  In 
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Fig. 3.5. Contributions of food groups to the seasonal diets of natural 

foraging baboons on the Cape Peninsula, South Africa, based on δ
13

C and 

δ
15

N of faecal samples collected from unknown individuals. Contributions 

were estimated using models that incorporated δ
13

C and δ
15

N (corrected for 

trophic enrichment as indicated on the horizontal axis), and percentage 

composition of carbon and nitrogen of food sources. Line segments indicate 

95% credibility intervals of % contribution to diet (on the vertical axis) of 

different foods.. Trophic enrichment factors used were those calculated by 

Sponheimer et al., (2003 a; c) for large mammalian herbivores (Spon); Hare 

et al., (1991) for pigs (Hare); and Blumenthal et al., (2012) for gorillas 

(Blum); and an average of all of the above (SHB). Win = winter, Spr = 

spring, Sum = summer, Aut = autumn; C3 plants = terrestrial C3 plant foods, 

C4 plants = terrestrial C4 plant foods, Mar = marine invertebrates. 

 

contrast, respective CI95% for marine food contributions to spring and summer diets were 0 – 

4% and 0 – 5%, indicating that the baboons ate very little marine food,if any, during these 

seasons. Thus, as the only other food type consumed in spring and summer, C3 plant-derived 
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food comprised the balance of the diet in both seasons (CI95% spring: 96 – 100% and CI95% 

summer: 95 – 100%). C3 foods made up the majority of foods consumed in winter (CI95%: 90 – 

97%) and autumn (CI95%: 89 – 95%), but the dietary proportions comprised of these foods 

were likely smaller than in the other two seasons. C4 foods were not consumed during spring 

or summer (they were excluded from spring 

and summer models based on behavioural  

observations), and made up only small 

proportions of winter and autumn diets (CI95% 

winter: 0 – 3% and CI95% autumn: 0 – 4%). 

 

Isotope ratios of hair samples  

Mean δ
13

C and δ
15

N values of hair collected 

from baboons of both sexes were -21.7‰ (± 

0.2, n = 14) and 4.5‰ (± 0.6, n =14) 

respectively (Fig. 3.6). Hair samples from 

males and females differed by just 0.1‰ in 

terms of δ
13

C, and this difference was not 

statistically significant. There was however a 

significant difference between δ
15

N values of 

hairs from the two sexes (W = 44, nmales = 7, 

nfemales = 7, p < 0.05); male baboon hairs (mean 

± SD = 4.9 ± 0.3‰, n = 7) were enriched in 

15
N by 0.8‰ relative to female baboon hairs 

(mean ± SD = 4.1 ± 0.5‰, n = 7). 

Hair samples from KK baboons of both 

sexes were enriched in 
13

C relative to C3 plant 

foods, and depleted relative to C4 plant foods 

and marine foods. In terms of 
15

N, hair 

samples were similar to C3- and C4 plant 

foods, and depleted relative to marine foods. 

Hair samples were however more similar to 

marine foods and C4 plant foods than faecal 

samples. The differences between hair from 

 
 

Fig. 3.6. Values of δ
13

C and δ
15

N of hair 

samples (grey symbols) collected from a 

natural foraging troop of chacma baboons on 

the Cape Peninsula, South Africa during 

different seasons. Mean values ± 2 SD for 

food items (corrected for trophic enrichment; 

black symbols) consumed by the baboons are 

shown. Trophic enrichment factors used 

were those calculated by (Sponheimer et al., 

2003b; c) for large mammalian herbivores 

(Spon); Nardoto et al., (2006) for pigs 

(Nard); and Nakashita et al., (2013) for 

Japanese macaques (Naka); and an average 

of all of the above (SNN). F = female, M = 

male, C3 = terrestrial C3 plant foods, C4 = 

terrestrial C4 plant foods, Mar = marine 

foods. 
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males and females meant that male hair was more similar to marine foods than female hair, in 

terms of carbon and nitrogen isotope ratios. 

 

Diet based on hair isotopes 

Results of models based on hair sample δ
13

C and δ
15

N values, and incorporating no prior 

information regarding diet composition, indicate that C3 plants make up the majority of both 

female and male KK baboons’ diets (Fig. 3.7). The full ranges of CI95% values, across models 

incorporating different TEFs, were 55 – 91% and 54 – 90% in females and males 

respectively. Estimated percentages of female and male baboons’ diets comprised of C4 plant 

foods were smaller, but C4 plants were included in diets of both males and females according 

to all four  models (rangefemale: 5 – 43%, rangemale: 4 – 42%). Marine foods made up the 

remaining small percentage of the diet in both females and males, and may in fact have been 

excluded from their diets altogether (rangefemale: 0 – 8%, rangemale: 0 – 10%). 

Irrespective of which TEF values were used, the above-mentioned pattern (C3 > C4 > 

marine foods in terms of dietary contribution) was consistent in both males and females (Fig. 

3.7). The modelled contribution of marine foods was remarkably consistent across models 

incorporating different TEF values. There was more variation in the modelled contributions 

of C3- and C4 plants however, as models that incorporated the TEF values calculated by 

Nardoto et al., (2006) suggested lower percentages of C3 foods, and higher percentages of C4 

foods, than models incorporating other TEF values (Fig. 3.7). As with faecal isotopes, there is 

uncertainty regarding which, if any, values from a single study, are appropriate for use in 

these models. In light of this, and considering the consistent pattern in the results of the 

models, further results will refer to the model which incorporated the averages of the TEF 

values calculated by Sponheimer et al., (2003 a; b), Nardoto et al., (2006) and Nakashita et 

al., (2013).  

The models that incorporated the average TEF values show the same pattern 

described above, but also show subtle, but interesting, differences between males and 

females. The 95% credibility intervals for contributions of C3- and C4 plants to the diets of 

females and males were almost the same, with minimum and maximum values of the 

respective intervals differing by no more than 1%. In the context of this study, the most 

important difference is the slightly larger percentage of male baboons’ diets which was likely 

made up of marine foods—95% confidence intervals for contributions of marine foods to 

diets of female and male baboons were 0 – 7% and 0 – 10% respectively.   
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Incorporating observation-based information regarding the diet of adult baboons in 

the troop into the models had a marked effect on the results (Fig. 3.8). The mean values (± 

SD in the case of C4 plants) that were incorporated for C3 plants, C4 plants and marine foods 

were 0.942, 0.018 (± 0.025) and 0.040.  Adding prior information had little effect on  the  

estimated percentage of marine foods consumed (the only change was an increase in the 

maximum value of the 95% credibility interval for females from 7% to 8%), but caused 

notable changes to the estimated dietary contributions of C3 and C4 foods. In this model, the 

95% credibility intervals of C3 foods in diets of female and male baboons shifted up to 75 – 

98% and 73 – 97% respectively. The 95% credibility intervals of dietary contributions of C4 

foods showed a corresponding shift in the opposite direction, with the result that lower and 

upper threshold values were 0 and 22% respectively, in both sexes. Thus, in terms of the 

general pattern of dietary contributions, the results of these models based on hair isotopes 

 
 

Fig. 3.7. Modelled diet composition of natural foraging baboons on the 

Cape Peninsula, South Africa, based on δ
13

C and δ
15

N of hair samples 

collected from male (M) and female (F) adult baboons. Models 

incorporated δ
13

C and δ
15

N (corrected for trophic enrichment), and carbon 

and nitrogen percentage composition, of foods. Line segments indicate 

95% credibility intervals of % contribution to diet (on the vertical axis). 

Trophic enrichment factors were those calculated by Sponheimer et al., 

(2003 a; b) for mammalian herbivores (Spon); Nardoto et al., (2006) for 

pigs (Nard); and Nakashita et al., (2013) for Japanese macaques (Naka); 

and the average of the above (SNN). C3 plants = terrestrial C3 plants, C4 

plants = terrestrial C4 plants, Marine = marine invertebrates. 
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were much more similar to those based on faecal isotopes, than were the hair models which 

did not incorporate prior information based on behavioural observations. 

 

Isotopic comparison of Peninsula baboon troops 

The average δ
13

C and δ
15

N values of hairs collected from male baboons from different 

Peninsula troops (from which at least four hair samples were collected), ranged from -21.6 –  

-20.4‰, and from 4.9 – 6.1‰ respectively (Fig. 3.9). Hairs collected from MT1 males were 

significantly enriched in 
13

C (W = 0, nKK = 7, nMT1 = 7, p < 0.001) and 
15

N (W = 0, nKK = 7, 

nMT1 = 7, p < 0.05), relative to those collected from KK males. The differences between the 

average δ
13

C and δ
15

N values of males from KK and MT1 troops were 0.3‰ and 1.2‰ 

respectively.  

 
 

Fig. 3.8. Modelled contributions of food groups to the diet of natural 

foraging baboons on the Cape Peninsula, South Africa, based on δ
13

C and 

δ
15

N of hair samples collected form male (M) and female (F) adult 

baboons. Contributions were estimated using models that incorporated 

δ
13

C and δ
15

N (corrected for trophic enrichment as indicated on the 

horizontal axis), and percentage composition of carbon and nitrogen of 

food sources, as well as prior information regarding diet based on 

behavioural observations. Line segments indicate 95% credibility intervals 

of % contribution to diet (on the vertical axis) of different foods. Trophic 

enrichment factors used were those calculated by (Sponheimer et al., 

2003b; c) for large mammalian herbivores (Spon); Nardoto et al., (2006) 

for pigs (Nard); and Nakashita et al., (2013) for Japanese macaques 

(Naka); and an average of all of the above (SNN). C3 plants = terrestrial 

C3 plant foods, C4 plants = terrestrial C4 plant foods, Mar = marine 

invertebrates. 
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Female baboons showed at least as much variation as their male counterparts in hair 

isotope ratios across troops, with average δ
13

C and δ
15

N values ranging from -22.9 – -20.9‰, 

and from 4.1 – 5.3‰ respectively. Hair samples from females from different Peninsula troops 

differed in terms of both δ
13

C (χ
2
 = 19.4, df = 3, p < 0.001) and δ

15
N (χ

2
 = 16.2, df = 3, p < 

0.01) values (Fig. 3.9). Hairs from KK females were depleted in 
13

C relative to those 

collected from Da Gama Park (DG; p < 0.01) and Buffels Bay (BB; p < 0.05) females, but 

enriched relative to MT1 females’ hairs (p < 0.05). Hairs from DG females were enriched in 

13
C relative to  BB females’ hairs (p < 0.05) and hairs from both troops were significantly 

enriched in
13

C relative to those collected from MT1 females (p < 0.05). In terms of δ
15

N, KK 

females’ hairs were significantly depleted relative to those of BB, DG and MT1 (p < 0.05 in 

all three cases).  

 
 

Fig. 3.9. Mean δ
13

C and δ
15

N values of hair collected from males (black symbols) and females 

(grey symbols) from four chacma baboon troops on the Cape Peninsula, South Africa. Troops are 

arranged in ascending order of human-modified habitat use (i.e. from top to bottom in the legend 

sensu Hoffman and O’Riain, 2012 a). KK = Kanonkop, BB = Buffels Bay, DG = Da Gama Park, 

MT1 = Main Tokai 1; error bars denote standard errors around mean values.  
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As in KK troop, males and females from MT1 troop differed in terms of δ
13

C and 

δ
15

N—hairs collected from MT1 males were significantly enriched in 
13

C (W = 35, nM = 7, nF 

= 5, p < 0.01) and 
15

N (W = 35, nM = 7, nF = 5, p < 0.01), relative to those from their female 

counterparts. 

 

DISCUSSION 

Kanonkop foods 

As was expected, separation of natural baboon foods into terrestrial C3 plants, terrestrial C4 

plants and marine foods was biologically meaningful, statistically sound, and appropriate for 

the purposes of using stable isotopes to model the diet of natural-foraging baboons. The δ
13

C 

and δ
15

N values of terrestrial plants and marine invertebrates consumed by the KK baboons 

fall within ranges of values reported previously for organisms of the respective types in this 

region (Sealy et al., 1986, 1987; Spriggs et al., 2003; Hill et al., 2006). Although the values 

reported here differ from some of those reported for terrestrial foods and foods of marine 

origin consumed by terrestrial mammals elsewhere, the patterns of variation are similar 

(Hobson et al., 1999; Szepanski et al., 1999; Stapp, 2002; Stapp and Polis, 2003; Ben-David 

et al., 2004).  

 One such pattern is a difference in δ
13

C values of marine invertebrates and terrestrial 

C3 plants. This difference arises at the level of the primary producer as marine algae are 

typically enriched in 
13

C relative to terrestrial C3 plants (O’Leary, 1988; France, 1995). The 

minimal fractionation of carbon by consumers at low trophic levels (DeNiro and Epstein, 

1978), means that consumers of algae in the marine intertidal zone are, like their foods, 

enriched in 
13

C relative to terrestrial C3 plants (Hobson et al., 1999; Stapp, 2002). 

The marine foods and C4 plants consumed by the baboons could not be differentiated 

based on δ
13

C values, but differed in terms of nitrogen ratios. This pattern may be explained, 

at least in part, by trophic enrichment in 
15

N (Ehleringer et al., 1986; Kelly, 2000; Robinson, 

2001). Trophic enrichment alone could not explain the large (~8‰) difference reported here 

however (DeNiro and Epstein, 1981), as the Peninsula baboons’ marine invertebrate prey 

feed at low trophic levels (Branch et al., 2005). This difference must therefore be caused by a 

combination of trophic enrichment and disparities in δ
15

N values of the plants in question and 

the majority of marine primary producers (Hoering, 1955; Wada et al., 1975; Sealy et al., 

1987). 
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Kanonkop faecal isotopes 

There was statistically significant seasonal variation in faecal carbon- and nitrogen isotope 

ratios, which is indicative of seasonal variation in isotopic composition of baboon diet. 

Carbon isotope ratios of faeces suggest that the baboons consumed more 
13

C-enriched foods 

(marine foods or terrestrial C4 plants) in summer and autumn. Variation in faecal δ
13

C across 

seasons is a reliable indicator of changes in dietary proportions contributed by foods with 

different 
13

C/
12

C ratios (Codron and Codron, 2009), because diet-tissue fractionation of 

carbon is consistent for a given consumer (Sponheimer et al., 2003b). Differences in δ
13

C 

between faeces collected in different seasons were comparable to those reported elsewhere 

(Codron et al., 2006, 2008), and, although significant, were small (< 1.1‰) relative to 

differences between depleted foods (C3 plants) and enriched foods (marine invertebrate tissue 

and terrestrial C4 plants). A comparison of the enrichment/depletion patterns between faeces 

and foods reported here and elsewhere (Codron et al., 2006, 2008) suggests that 
13

C-enriched 

foods (marine foods and terrestrial C4 plants) comprised only small percentages of KK 

baboon diet during all four seasons. 

Variation in faecal δ
15

N values across seasons probably reflected seasonal differences 

in dietary 
15

N content. Like variation in δ
13

C values, differences in faecal δ
15

N values do 

reflect differences in dietary isotopic values (Sponheimer et al., 2003d). Interpretation of 

faecal δ
15

N variation across seasons is more complicated however, as nitrogen isotope 

variation might also reflect variation in TEFs (Ambrose, 1991; Vanderklift and Ponsard, 

2003). Non-dietary factors which may affect nitrogen isotope fractionation can likely be 

disregarded in this instance (Vanderklift and Ponsard, 2003; Codron and Codron, 2009), as 

baboons always excrete nitrogenous waste in the same form (i.e., urea; Braun, 1998), and 

Peninsula baboons are, as a rule, not water-stressed (Hoffman and O’Riain, 2012b). Thus, if 

seasonal variation in faecal 
15

N/
14

N ratios is a reflection of differences in trophic enrichment, 

these differences would almost certainly be caused by shifts between diets which differ in 

terms of protein concentration (Codron and Codron, 2009). Although dietary protein may 

have profound effects on diet-tissue nitrogen isotope fractionation in other tissues 

(Sponheimer et al., 2003c), the effect of dietary protein content on diet-faeces fractionation is 

relatively small (Sponheimer et al., 2003d). It is therefore highly likely that seasonal variation 

in faecal 
15

N/
14

N reflects shifts between diets which differ in 
15

N abundance across seasons. 

Higher δ
15

N values of faeces collected in winter and autumn almost certainly reflect 

increases in marine food intake during these seasons. Higher 
15

N values could reflect either 

decreased intake of depleted foods (δ
15

N < 0) within the C3 food group (e.g., Watsonia sp.), 
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or increased intake of more enriched foods (δ
15

N > 0), either within the C3 food group (e.g., 

Carpobrotus sp.) or from the intertidal zone (Ambrose and Deniro, 1986; Codron et al., 

2006). Although these factors are not mutually exclusive, the higher frequency of marine 

foraging in winter and autumn (indicated by behavioural observations), and concomitant 

increase in %N of faeces, suggest that the enrichment in faecal 
15

N is certainly due, at least in 

part, to increased marine food intake. This suggestion is given further credence by the strong 

significant correlations between MFIf and faecal δ
15

N in spring and autumn, and across all 

seasons. 

Nitrogen isotope ratios of baboon faeces suggest that although there is seasonal 

variation in marine food intake, invertebrates from the intertidal zone do not comprise large 

proportions of baboon diet during any season. The differences among nitrogen isotope ratios 

of baboon faeces collected in different seasons, while statistically significant, were small 

relative to differences between plant foods and marine foods. The enrichment/depletion 

patterns in 
15

N reported here are similar to those between foods and more enriched faeces 

collected by Codron et al. (2006, 2008). Thus, KK baboon faeces displayed similar δ
15

N 

values (relative to foods consumed at each site) to faeces of baboons elsewhere that did not 

engage in extensive faunivory. 

Inferences based on comparison of patterns of enrichment/depletion in carbon and 

nitrogen isotopes, and results of faecal isotope-based models, are therefore in agreement. 

Interpretation of faecal isotopes following either method suggests that, although there was 

some variation, KK baboons ingested little marine- and C4 food, and that terrestrial C3 plant 

parts comprised the majority of their diet, during all four seasons (Sponheimer et al., 2003b; 

d; Codron and Codron, 2009). 

 

Kanonkop hair isotopes 

Hair isotope ratios indicate that male and female baboons consumed diets that differed in 

terms of nitrogen isotope ratios, but not in terms of carbon isotope ratios. The latter 

conclusion is sound, as primate hair reflects carbon isotope ratios of diets (Loudon et al., 

2007; Nakashita et al., 2013), and animal diet-hair carbon isotope enrichment is remarkably 

consistent (Sponheimer et al., 2003b). The enrichment/depletion patterns of hair from 

baboons of both sexes, relative to different foods, can therefore be interpreted 

simultaneously. 

The patterns of enrichment/depletion in 
13

C observed here (relative to different food 

groups) suggest that these baboons may have included as much as 20–30% 
13

C-enriched 
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foods (marine invertebrates or terrestrial C4 plants) in their diet. These patterns were similar 

to those observed in the Waterberg (a mountainous area in the far north of South Africa) 

between different foods and hair samples collected from baboons which had included 20–

30% “C4 food” (i.e., C4 grasses and succulents which use the CAM photosynthetic pathway) 

in their diet (Codron et al., 2008). In the context of Codron et al.’s (2008) study, an estimate 

of the proportion of diet comprised of 
13

C-enriched food (based solely on δ
13

C values) was 

highly informative. This is not the case here however, as marine foods and terrestrial C4 

foods are similarly enriched in 
13

C relative to terrestrial C3 foods, and δ
13

C values alone 

cannot be used to resolve the contributions of these foods to KK baboon diet (Crowley, 2012; 

Phillips, 2012). Consideration of isotope ratios of a second element such as nitrogen, which 

distinguished these foods from each other in isotope space, is therefore necessary. 

Mathematical models represent the only justifiable isotope-related approach for 

determining the extent of faunivory in KK baboons. This is the case because few studies have 

included isotope ratios of both primate hair and specific food items consumed (Oelze et al., 

2011). A comparison of hair isotope values with those reported in other studies (Schoeninger 

et al., 1997, 1998, 1999; O’Regan et al., 2008) should be treated with caution, because any 

differences could, at least in part, be attributed to variation in food source isotope ratios 

across study sites (Schoeninger et al., 1997, 1998; Crowley et al., 2011; Oelze et al., 2011). 

The δ
15

N values reported here are generally lower than those reported for hair of congenerics 

in the Awash National Park, Ethiopia, though there is some overlap (Moritz et al., 2012). This 

could be indicative of lower levels of faunivory (Schoeninger et al., 1998), or a greater 

reliance on nitrogen-fixing plants (Schoeninger et al., 1997, 1999) on the part of Peninsula 

baboons. It is however difficult to state with any degree of certainty which of these 

explanations is correct, as Moritz et al., (2012) did not report δ
15

N values of baboon food 

items in the Awash National Park.  

 

Comparison of estimated diets 

Models which incorporated isotope ratios of baboon hair, and those that incorporated faecal 

isotope ratios, both indicated that KK baboon diet is dominated by C3 foods and that C4- and 

marine foods make up small proportions of the diet. The exact dietary proportions estimated 

by the two sets of models differed however. These dissimilarities are in part due to 

differences in food source input—C4 foods were not included in Spring and Summer faeces 

models—but there are several other factors that might have contributed to the discrepancies 

between the results of the models. 
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Firstly, it is plausible that not all components of the model input, which determines 

the accuracy and reliability of output from models such as these (Caut et al., 2008; Parnell et 

al., 2010; Bond and Diamond, 2011), were entirely accurate. It is likely that the isotope ratios 

and elemental concentrations incorporated into the models were accurate and appropriate, as 

geographic and temporal isotopic variation were accounted for (Heaton et al., 1986; Swap et 

al., 2004; Crawford et al., 2008; Codron and Codron, 2009), but this may not be true of TEF 

values. 

The TEF values applied here were not baboon-specific values, because no such values 

are available in the literature. Diet-hair- and diet-faeces carbon and nitrogen TEFs have been 

determined for a variety of taxa (DeNiro and Epstein, 1978, 1981; Hobson et al., 1996; 

Sponheimer et al., 2003b; c; d; Hwang et al., 2007; Blumenthal et al., 2012; Nakashita et al., 

2013), but not yet for baboons. The extent of enrichment in carbon between animal diet and 

tissue is relatively constant across diets, but not across species (Sponheimer et al., 2003b). 

Diet-tissue enrichment in nitrogen on the other hand has been shown to vary with a number 

of factors including the form in which nitrogenous waste is excreted (Vanderklift and 

Ponsard, 2003), dietary protein quantity (Codron and Codron, 2009) and quality (Robbins et 

al., 2005), and rainfall (presumably a proxy for water stress; Codron and Codron, 2009). In 

situations such as this, where species-specific values are unavailable, researchers must use 

values determined for other appropriate animals as proxies (Codron et al., 2006; Bond and 

Diamond, 2011). The values applied in this study were determined for animals that are 

ecophysiologically similar to baboons and were not water-stressed during experiments (Hare 

et al., 1991; Sponheimer et al., 2003b; c; d; Nardoto et al., 2006; Blumenthal et al., 2012; 

Nakashita et al., 2013), and were therefore the most appropriate values available. It has 

however been shown that these models are extremely sensitive to changes in TEF (Bond and 

Diamond, 2011). If, despite being the best current proxies, the TEF values used here are in 

fact not correct for baboons, the model output would not provide accurate estimates of KK 

baboon dietary composition. 

Secondly, a factor which is not inherent in the models, but might affect estimates of 

dietary composition, is the dietary integration period, which varies hugely across tissues 

(Chisholm et al., 1982; Tieszen et al., 1983; Hilderbrand et al., 1996). Faeces reflect 

integrated diet consumed over just a few days (Coates et al., 1991; Sponheimer et al., 2003b), 

while hair may reflect diet integrated over several months (Schwertl et al., 2003; Ayliffe et 

al., 2004). The exact period reflected in hair is determined by hair growth rate and length 

(longer hairs reflect diet integrated over longer periods) as hair is biologically inert once it 
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has been produced (Voigt et al., 2003). Peninsula baboons are known to exploit different food 

items in different seasons (Davidge, 1978; Van Doorn et al., 2010; Hoffman and O’Riain, 

2011), and the isotopic composition of their diet might therefore change through time. If this 

were true, the dietary proportions estimated using the two sets of models should differ. 

Thirdly, isotopes in hair and faeces may reflect isotopic composition of different 

components of an animal’s diet (Tieszen and Fagre, 1993; Codron et al., 2011). Faeces reflect 

the stable isotope ratios of animals’ ingested diets (Sponheimer et al., 2003b; d; Steele and 

Daniel, 2009; Blumenthal et al., 2012), but may over-represent dietary items with lower 

digestibility (Codron et al., 2011). Hair isotopes on the other hand reflect the isotope ratios of 

assimilated nutrients, particularly the protein component of the animal’s diet (Tieszen and 

Fagre, 1993). Hair isotope ratios might therefore indicate greater dietary contributions of 

marine invertebrates, as these are richer in protein than all of the KK baboons’ plant foods 

except the seeds of one species (see Chapter 2). Thus, even if the correct TEF values were 

used, and the dietary integration periods represented were the same, the output of the hair- 

and faeces-based models are expected to differ to some extent. Due to the uncertainty 

associated with both models, the model results should be compared not only to each other, 

but also to dietary estimates based on behavioural observation, in order to assess their 

accuracy (Schoeninger et al., 1997; Kurle and Worthy, 2002). 

Importantly, the estimates of seasonal diet composition based on faecal isotope ratios 

are remarkably similar to those generated from observational data. In all four seasons, the 

marine dietary contributions estimated from behavioural data fell well within the 95% 

credibility intervals for this food source generated by the models (see Chapter 2). 

Furthermore, the model output indicates that even in spring and summer, marine foods were 

definitely ingested by baboons, even if only in small quantities. Not surprisingly therefore, 

the total intake of terrestrial plant foods estimated from behavioural observations also fell 

well within the relevant 95% credibility intervals (combined for the purposes of this 

comparison). 

Comparison of diet contributions estimated from hair isotope ratios to those based on 

behavioural observation is more complex in the context of this study. This is largely because 

the dietary integration period reflected in baboon hair is unknown, as there is a paucity of 

information regarding primate hair growth in the literature. It has however been shown that 

some primates exhibit synchronous hair growth, (Inagaki and Nigi, 1988), while others, 

including humans, exhibit asynchronous hair growth (Harkey, 1993; Isbell, 1995). In both 

cases, hair growth may occur throughout the year, as hair grows continuously between moults 
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in species with synchronous hair growth (Inagaki and Nigi, 1988). In light of this, and our 

current poor understanding of baboon hair growth, it was assumed that homogenised baboon 

hair samples reflect diet integrated throughout all four seasons. Dietary estimates based on 

hair isotope ratios were therefore compared to estimated diets of adult baboons based on 

behavioural observations collected throughout the year. 

As in the comparison described above, observation-based estimates of marine food 

components in diets of adult baboons fell within the 95% credibility intervals for marine food 

generated by the models that incorporated hair isotope ratios, but no prior information. There 

was also concordance between model- and observation-based estimates of marine food intake 

differences between the sexes (both indicated that male baboons ingest slightly more marine 

foods than females). The 95% credibility intervals for C3- and C4 foods generated by these 

models did not include the estimated contributions of these foods derived from behavioural 

observation however (see Appendix C). Relative to observation-based estimates, the model 

overestimated the dietary contribution of C4 plants, and underestimated the C3 component of 

baboon diet. 

The second set of SIAR models incorporated the same isotope ratios and elemental 

concentration values as the first, but also incorporated prior information regarding diet. The 

95% credibility intervals for marine intake generated by these models were very similar to 

those generated by the first set of models, and also included the observation-derived estimates 

of marine food intake. As with the first set, the model output and estimates derived from 

observation records suggested similar differences between males and females. The C3- and C4 

food 95% credibility intervals generated by these models differed sufficiently from those 

generated by the first set of models however, such that the observation-based estimates fell 

within these credibility intervals. Thus there is agreement between the model output and 

observation-derived dietary estimates, but it is important to note that the model output does 

not rule out a relatively large (>20% of total diet) C4 food input to baboon diet, or C3 

contribution as low as 75% of diet. 

The high values of the upper limits of 95% confidence intervals for C4 foods in the 

models based on hair isotope ratios are surprising. If anything, hair isotope values might be 

expected to over-represent marine invertebrate dietary input, because these foods provide a 

disproportionately large amount of protein (see Chapter 2; Tieszen and Fagre, 1993). This 

incongruity could be indicative of an erroneous value in the model input (Caut et al., 2008; 

Phillips, 2012). Considering the precision of the isotope ratios, the values which are more 

likely to be incorrect are the TEFs, which, if incorrect, may have profound adverse effects on 
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the accuracy of the model output (Bond and Diamond, 2011). Diet-hair carbon TEFs are 

relatively consistent across conspecific individuals on the same diet (Hobson et al., 1996), 

and across species (Sponheimer et al., 2003b). Thus, it seems unlikely that the carbon TEF 

used here are inappropriate. Animal diet-hair nitrogen TEFs show much greater variation 

than carbon TEFs (Sponheimer et al., 2003b; c), and may differ markedly across conspecific 

individuals on the same diet, and individuals of different species on the same diet 

(Sponheimer et al., 2003c). It is therefore plausible, that the nitrogen TEF used here could 

have been incorrect and had a smaller TEF value been used, the hair would have been more 

enriched in 
15

N relative to terrestrial C4 plants, and less depleted relative to marine 

invertebrates. Use of such a value would therefore have resulted in the model producing 

larger estimates of marine food intake and smaller estimates of terrestrial C4 plant intake. In 

light of this, further research is needed to determine the true diet-hair 
15

N TEF for baboons on 

a diet which includes small amounts of animal protein. 

Output from models that incorporated faecal isotope ratios indicated that consumption 

of marine foods varied across seasons, but that marine foods comprised only small dietary 

proportions (<10%) during all four seasons. Davidge (1978) reported a similar pattern based 

on observational study of another troop of Peninsula baboons that did not raid and included 

marine invertebrates in their diet. Insects, the other animals which might be ingested by these 

baboons, comprise an even smaller proportion of Peninsula baboon diet than marine foods 

(Hall, 1962; DeVore and Hall, 1965; Davidge, 1978; Chapter 2 of this thesis). The results of 

faecal isotope-based models presented here therefore agree not only with the companion 

study on this troop (see Chapter 2), but also with previous studies of Peninsula baboons. 

All available evidence therefore suggests that natural-foraging Peninsula baboons do 

not ingest large amounts of protein-rich animal tissue. This is not unusual in baboons—

congeners elsewhere also include only small amounts of animal tissue in their diets (Altmann 

and Altmann, 1970; Post, 1982; Byrne et al., 1993; Altmann, 1998; Okecha and Newton-

Fisher, 2006). The %N values of Peninsula baboons faeces are generally similar to those on 

the upper end of the spectrum of reported by Codron et al. (2006) for faeces of baboons from 

the Kruger National Park and Waterberg regions. This suggests that the diet of Peninsula 

baboons is in fact relatively rich in protein, which is surprising considering that plants in the 

Peninsula’s dominant terrestrial habitat (fynbos), generally have nutrient-poor tissues 

(Campbell, 1986; Stock and Allsopp, 1992; Coetzee et al., 1997). Despite this, it seem that 

Peninsula baboons simply may not need to marine forage more in order to fulfil their 

nutritional requirements. This may be because their dexterity allows them to fulfil the 
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majority of their nutritional requirements by selectively ingesting those parts of fynbos plants 

which are relatively rich in nutrients. 

 

Isotopic comparison of Peninsula baboons 

There were significant isotopic differences between males and females in both KK and MT1 

troops. This pattern, which is unusual in primates (Schoeninger et al., 1997; O’Regan et al., 

2008; Oelze et al., 2011), indicates that males and females from the same troop differ in 

terms of dietary intake (Schoeninger et al., 1997; Nakashita et al., 2013). MT1 males were 

enriched in 
13

C by ~1.7‰ relative to females from the same troop. This suggests that diets of 

males include at least 10% more C4 plant-derived food than females (Codron et al., 2008). 

This could represent either increased consumption of alien C4 grasses in residential gardens, 

or C4 plant-derived human foods (e.g. corn and sugar, and foods in which these are major 

ingredients) which could be obtained from human dwellings, rubbish bins and vehicles in the 

troop’s home range (Hoffman and O’Riain, 2012a; Johnson et al., 2013). 

In both KK- and MT1 troops, males were on average enriched in 
15

N relative to 

females. This suggests that males either ingest greater amounts of enriched animal tissue 

(Schoeninger et al., 1998) or less food derived from depleted nitrogen-fixing plants 

(Schoeninger et al., 1997, 1999). Based on the other results presented here, and incidence of 

faunivory in baboons reported elsewhere (Altmann and Altmann, 1970), the former seems 

more likely. 

In both males (KK and MT1 troops) and females (BB, KK, DG and MT1 troops), 

individuals from different troops differed in terms of both δ
13

C and δ
15

N. The most striking 

aspect of inter-troop variation in 
13

C is the depletion of MT1 females relative to other 

females. Considering that KK females ate so little C4 food, this could imply that the MT1 

females fed exclusively on C3 foods (Schoeninger et al., 1999). It could however, also be 

indicative of the fact that these baboons spend a great deal of time in the closed-canopy 

plantations of Tokai (Hoffman and O’Riain, 2011). It has been shown elsewhere that tissues 

of C3 plants in closed canopy habitats are depleted in 
13

C relative to those of C3 plants in 

nearby open habitats (Schoeninger et al., 1997; Cerling et al., 2003, 2004). Thus, baboons 

that spend much of their time in closed-canopy habitats, and feed mostly on C3 foods from 

these habitats, should be expected to have tissues that are depleted in 
13

C relative to those of 

baboons that frequent more open habitats. If this is true, and the C3 plants consumed by Tokai 

baboons are markedly depleted relative to those consumed by other Peninsula baboons, the 

difference in dietary composition of KK and MT1 males is in fact greater than it appears 
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based only on hair isotope ratios. Unfortunately, there are no carbon isotope data for plants in 

the Tokai plantation in the literature, so further study is required to quantify the true extent of 

the differences in C3- and C4 food consumption between Tokai baboons and baboons from 

other Peninsula troops. If one ignores the δ
13

C values of MT1 females, and considers the 

values of females from other troops, it is apparent that across troops, as time spent in human-

modified habitats increases (Hoffman and O’Riain, 2012a), so does enrichment in 
13

C. This 

suggests that those baboons that spend time in human-modified habitats switch to a diet that 

includes more C4 plant-derived foods (probably C4 alien grasses and C4 crop-derived human 

foods) (Codron et al., 2008). 

Both males and females of KK troop were depleted in 
15

N relative to individuals of 

the same sex from other troops (females of the other troops were not significantly different 

from each other). KK animals might therefore either consume significantly less animal tissue 

(Schoeninger et al., 1998), or significantly more nitrogen-fixing plant tissue (Schoeninger et 

al., 1997, 1999), than the individuals from other troops. It is interesting to note however that 

the individuals which are enriched in 
15

N are those from troops which are known to come into 

contact with, and raid food from, humans (Hoffman and O’Riain, 2012a). A similar pattern 

was observed in the Kruger National Park, where faeces from baboons that had access to 

human foods were enriched in 
15

N relative to natural-foraging troops (Codron et al., 2006). 

Based on this, it must be assumed that baboons are either raiding animal tissues from humans 

or that human foods derived from plants are enriched in 
15

N relative to natural foods. The 

former is unlikely, as baboons rarely take meat from humans and human dwellings, 

preferring foods such as fruits, vegetables and grain-based products (Kaplan et al., 2011). The 

latter on the other hand is plausible as manure and other non-synthetic fertilizers are enriched 

relative to atmospheric nitrogen (Bateman and Kelly, 2007), and crops fertilized with these 

substances have correspondingly high δ
15

N values (Bogaard et al., 2007). Baboons that ingest 

these crops (e.g., MT1 troop), the foods derived from them (e.g., BB, DG and MT1 troops), 

or insects that have fed on them (Park and Lee, 2006; Birkhofer et al., 2011), would be 

enriched relative to individuals that do not do so (Sponheimer et al., 2003c). Whether this is 

the correct explanation or not, the fact remains that there is a general pattern of enrichment in 

both 
13

C and 
15

N of baboon hair with increasing association with humans and human-

modified habitats. 
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Conclusion 

The results presented here suggest that stable isotope analysis may allow for accurate 

estimation of contributions of marine foods to natural-foraging Peninsula baboon diet. The 

estimates of marine dietary input generated by models that incorporated faecal isotope ratios 

were more similar to dietary estimates based on behavioural data, than were those of models 

that incorporated hair isotope ratios. Stable isotope ratios of baboon hair might provide a 

better indication of how much of the baboons’ dietary protein is assimilated from marine 

foods, but further research is required to ascertain the best TEF value for use in hair isotope-

based models. That said, analyses of both tissues indicated that natural-foraging Peninsula 

baboons incorporate only small amounts (≤10%) of marine foods into their diet. Variation in 

baboon hair isotope ratios across troops suggests that foods obtained from humans and 

human-modified habitats are enriched in both 
13

C and 
15

N relative to natural plants foods. 

Stable isotope analysis might therefore be of limited use in quantifying the extent of marine 

food use in baboons that access human foods, but could in fact be used as a remote means for 

assessing raiding. This precludes the use of stable isotope analysis in quantifying the extent 

of ingestion of marine foods by non-natural foraging baboons. 
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CHAPTER 4  

 

Factors affecting exploitation of marine 

intertidal organisms by natural-foraging 

baboons on the Cape Peninsula 
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ABSTRACT 

Baboons are highly adaptable generalist omnivores that are known to exploit a wide variety 

of foods within a given habitat. On the Cape Peninsula, South Africa, where terrestrial 

systems are largely oligotrophic, chacma baboons (Papio ursinus) supplement their diet with 

protein-rich invertebrates from the marine intertidal zone. No study to date has provided a 

detailed account of seasonal variation in exploitation of marine foods, or the potential factors 

which might influence this behaviour. In this study behavioural observations were used to 

determine how the frequency and duration of marine foraging bouts varied seasonally. 

Generalized Additive Models (GAM) were used to determine which environmental factors 

predicted the probability and intensity of marine foraging during a given hour. Marine 

foraging was recorded on up to 67% of days during a given season, but the troop members 

typically only spent short periods feeding on the shore (marine foraging by any member of 

the troop was observed during just 8.4% of total observation time). There was seasonal 

variation in both the frequency of marine foraging by the troop and the duration of MF bouts 

(the troop foraged in the intertidal zone most frequently in winter, but bouts were longest in 

autumn). GAMs indicated that multiple environmental factors (both biotic and abiotic) 

explained significant amounts of residual deviance of models of probability and intensity of 

MF. Both the intensity and the probability of MF declined with increasing tide height and 

swell height; probability increased slightly as offshore wind speed increased; and intensity 

fluctuated with wind speed and direction, and varied significantly across seasons and between 

coasts. The results therefore suggest that abiotic oceanic factors limit the exploitation of 

marine foods by the baboons, and that biotic factors play a role in when and where this 

behaviour is carried out. 
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INTRODUCTION 

Exploitation of marine foods by Peninsula baboons has been documented multiple times in 

the literature (Hall, 1962, 1963; DeVore and Hall, 1965; Davidge, 1978), but no study to date 

has provided an explanation of the factors that influence the occurrence or frequency of this 

unusual behaviour. Hall (1962, 1963) described the behaviour and identified the marine 

organisms that are consumed by Peninsula baboons, but did not quantify the amount of 

marine food eaten. Davidge (1978) quantified the proportional contribution of marine foods 

to the diet of a troop of chacma baboons on the Cape Peninsula over the course of a year, but 

her estimate was based on limited monthly observations (as little as 12.5 hours of observation 

per month). Considering the likely effects of tidal cycles on marine foraging (MF) (Hall, 

1962; Nielsen, 1991; Conradt, 2000), any study of MF should, at the very least, control for 

variation in tide heights through lunar cycles (Palmer, 1995). Davidge (1978) makes no 

mention of tides and it therefore seems unlikely that she accounted for tidal variation in her 

sampling. She might therefore have underestimated (or overestimated) the amount of time 

that her study animals allocated to feeding on marine foods depending on when she collected 

data. Also, Davidge’s (1978) study troop had access to abundant protein-rich seeds of alien 

trees and might therefore have been less dependent on marine foods as a source of protein 

than baboons living exclusively in nutrient-poor fynbos vegetation. 

The few studies in which the effects of environmental variables on exploitation of 

marine foods by other terrestrial mammals have been quantified, suggest that the behaviour is 

limited by advancing tides (Nielsen, 1991; Bonesi et al., 2000). It seems likely that these 

patterns would hold true in other systems, as maritime mammals seldom enter the water fully 

(if at all) while foraging (Dalquest, 1948; Conradt, 2000; Sleeman et al., 2001; Hansen et al., 

2003; Smith and Partridge, 2004). Hall (1963) stated that Peninsula baboons exploit marine 

foods “almost daily when wind and tide allow… easy access to intertidal rock pools and to 

the sea verge”, but while in the intertidal zone, baboons “would rush away on the approach of 

a large wave.” The potential effects of environmental factors such as tides and wave height 

have however, not yet been quantified. 

Observations of baboon behaviour (Chapter 2), and stable isotope ratios of the same 

animals’ hair and faeces (Chapter 3), indicate that marine foods comprise small proportions 

of the diet of the Peninsula’s last remaining non-raiding baboons. This is surprising 

considering the protein-rich nature of these foods, and it seems likely that some 
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environmental factors limit this behaviour. Further investigation of the behaviour and the 

environmental factors that may limit exploitation of marine foods is therefore warranted. 

 

Aims and predictions 

The aims of this chapter are to quantify in greater detail the use of marine food resources by 

the same study troop investigated for Chapters 2 and 3, and to elucidate the potential effects 

of a suite of environmental factors that may limit this behaviour. In light of results reported in 

in Chapters 2 and 3, seasonal variation in marine invertebrate condition reported elsewhere, 

and trends described in other studies of maritime mammals (sensu Carlton and Hodder, 

2003), and based on Hall’s (1963) statement mentioned above, I predict that: 

1. The frequency and duration of marine foraging bouts, and the number of animals 

exploiting marine foods during these bouts will show marked seasonal variation. 

2. KK baboons will be less likely to marine forage when the tide is in, or when rough 

seas (a result of large swells, strong winds, or a combination of the two) restrict safe 

access to the intertidal zone. 

3. If they do feed on marine foods when conditions are not optimal, I predict that the 

intensity of exploitation will increase with improving conditions (lower tide heights, 

smaller swells and lower wind speeds).  

 

METHODS 

Study animals 

The study troop for this research was the Kanonkop troop (KK). The troop’s home range 

encompasses 45.26 km
2 

of largely untransformed fynbos habitat in the northern section of the 

CoGH section of the TMNP (see Chapter 2), and includes almost 13 km of coastline on the 

Peninsula’s east and west coasts. In March 2010 (when the most accurate count was 

obtained), KK numbered 56 baboons, with an adult sex ratio (M:F) of 1:3.4.  Thus, the per 

capita area of the troop at this time was 0.81 km
2
.baboon

-1
 (see Chapter 2).  

 

Data collection 

With the help of a team of volunteer field assistants, I collected data on 136 days during five 

discrete fieldwork sessions spread across all four seasons between May 2009 and June 2010 

(see Chapter 2; Kruger, 1979). During each of the first four fieldwork sessions (June and 

September 2009, and January and March 2010) we attempted to collect data on 30 
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consecutive days within the calendar month in order to account for fluctuations in tide height 

through lunar cycles (Palmer, 1995). Although we lost the troop on a few occasions (in two 

of the four months), we nevertheless collected data on a minimum of 30 days during each of 

the first four sessions (see Chapter 2). 

 The baboons of KK troop had been habituated to human presence at a distance of ~20 

metres for a previous study (Hoffman and O’Riain, 2012a), so it was possible for observers to 

follow the troop on foot at this distance. We performed instantaneous scan samples (Altmann, 

1974) at 10 minute intervals on the troop throughout each day, while following the troop 

from their morning to evening sleeping sites. When the troop entered the intertidal zone and 

at least one baboon was observed feeding on marine organisms we changed the observation 

protocol. We recorded the start-time and end-time of each MF bout, where a bout was 

defined as a continuous period throughout which at least one baboon was feeding on marine 

organisms in the intertidal zone, and noted whether the bout took place on the Peninsula’s 

east or west coast. Throughout each bout, we recorded counts of the number of animals 

(excluding infants) foraging on marine organisms at one minute intervals (hereafter referred 

to as MF scans). All animals that were visible within 20 s of the beginning of the MF scan, 

and were handling or ingesting marine organisms were included in the scan. These data were 

collected in this manner because initial observations suggested that feeding on marine 

organisms is a sporadic, short-duration behaviour. Although MF scans did not allow analysis 

of individual-level differences in exploitation of marine foods, this method did provide a 

robust estimate of the frequency, duration and intensity of MF at a troop level. 

 I used MF scan values and bout durations to determine the average percentage of time 

available that KK baboons spent feeding on marine foods. I did so by summing MF scan 

values during a given season (and the whole study period) and then dividing this figure by the 

total number of animals in the troop (49, excluding infants) and then by the total number of 

daylight minutes during the period in question. Based on the activity budgets determined in 

Chapter 2, this value was then translated to the percentage of total feeding time spent feeding 

on marine foods. Unfortunately, feeding rates and individual-level differences in behaviour 

could not be determined as this would have required focal sampling and close proximity to 

individual troop members (see Altmann, 1974). Collecting these data would have involved a 

violation of the conditions of my SANParks research permit, which stipulated that troop 

members could not be followed and habituated for the close individual observation required 

for focals. This condition was imposed to prevent further habituation of the Peninsula’s last 

‘non-commensal’, free-ranging troop. 
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External organisations provided the abiotic environmental variable data for the study. 

Tide height data (metres above chart datum), were collected at Simonstown (10 km north of 

KK troop’s home range on the east coast of the Peninsula), by the South African Navy 

Hydrographic Office. The South African Council for Scientific and Industrial Research 

(CSIR) provided swell height data (m) collected with a Directional Waverider buoy located 

~5.5 km off the Peninsula’s west coast at 34°12.24’S, 18°17.20’E. The Cape Town Weather 

Office of the South African Weather Service (SAWS) provided temperature-, precipitation-, 

and wind speed- (ms
-1

) and wind direction data collected at the Cape Point Weather Station 

(34°21.20’S, 18°29.35’E). I obtained sunrise and sunset data for Cape Town from the South 

African Astronomical Observatory Website (SAAO, 2010). Together, these data were used to 

investigate the potential effects of abiotic factors on the exploitation of marine foods by KK 

baboons. 

Ideally, food availability in marine intertidal habitats would also have been 

investigated using detailed numerical observations. This was not possible however, due to the 

scale of the undertaking required to accurately determine marine food availability within the 

troop’s home range. The density of baboons’ marine invertebrate prey, as well as the size and 

condition of these organisms, may differ between coasts (Branch, 1974; Xavier et al., 2007), 

and along each coast over small spatial scales (Van Erkom Schurink and Griffiths, 1991; 

Steffani and Branch, 2003a), and condition may vary through time (over the course of 

seasons; Branch, 1974; Van Erkom Schurink and Griffiths, 1991). An accurate assessment of 

marine food availability within KK troop’s home range would therefore, at the very least, 

require a large number of counts along multiple transects in the intertidal zone on each coast. 

Even these data might not provide a true indication of marine food availability because of the 

rapid changes in accessibility resulting from periodic submergence (Branch et al., 1998). The 

effects of tidal cycles (and associated factors that affect submergence) should therefore be 

incorporated into assessments of marine food availability, but this cannot be done if these 

effects are not well-understood. The effects of abiotic factors on exploitation of marine foods 

will be ascertained in this chapter, and the results reported here could then be used to inform 

an accurate assessment of marine food availability. The latter was unfortunately beyond the 

scope of this study. Thus, the variables “Season” and “Coast” were used as broad-scale 

proxies for food availability in the models of marine food exploitation. 
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Statistical analyses 

Data preparation 

The vast majority of MF bouts throughout the study were shorter than 1 hour (mean ± SD = 

23.7 ± 25.3 min, n = 224). In light of this, and given the resolution of the environmental data 

(weather variable- and swell height values were provided for each hour and half-hour 

respectively), I divided the observation time into hour-long sampling periods for the purposes 

of investigating the frequency and intensity of MF. I included all full hours between sunrise 

and sunset. I calculated the average tide height-, swell height- and wind speed values, and 

determined the predominant wind direction, during each hour. Depending on the wind 

direction, and which coast the baboons were closer to during the hour in question, I classified 

wind as either on- or offshore. I determined “tide status” (i.e., whether the tide was advancing 

or receding) by comparing average tide height (THT) during the hour in question and the 

preceding hour. I defined tides as advancing if THTt < THTt-1, and receding if THTt > THTt-1, 

where t represents time at the start of the hour in question. Box plots revealed that there was 

adequate spread in tide height, wind speed and swell height during observation time over the 

study period and that there were no true outliers in any of these variables. To test for 

collinearity, I performed Pearson correlations between all pairs of predictor variables 

(following Dormann et al., 2013), and found that no two variables were strongly linearly 

related (r < 0.7 in all cases). 

The baboons did not marine forage at all during the majority of observation hours 

(86%, n = 1417 hours). In 41% of those hours, the baboons were more than 1063 m (mean + 

1×SD KK troop’s hourly travel distance) from the coast and were thus not able to marine 

forage, irrespective of intertidal conditions. I thus excluded all of these samples to provide a 

subset of foraging data in which the troop was sufficiently close to the coast (< 1063 m) and 

could thus choose, based on the environmental conditions at the time, whether or not to 

marine forage and at what intensity to do so. 

I created two variables based on MF observations to use as response variables in the 

models described below. The first was a binary descriptor of MF, to which I assigned a value 

of 0 if no baboon ingested marine foods and 1 if at least one animal ingested marine food 

items during a given hour. The second was the average proportion of the troop that fed on 

marine foods within a given hour (this was only calculated for hours which had been assigned 

a value of 1). I calculated the average proportion of the troop that fed on marine foods during 

hour T using the formula: 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑜𝑝𝑇 = (
∑ 𝑀𝐹 𝑠𝑐𝑎𝑛𝑇+𝑖

59
𝑖=0

49
) /60, 

where T is the time at the turn of the hour, MF scan is the number of animals ingesting 

marine foods (see above) and i is the number of minutes since time T. Count values might 

range from 0 to 49 within a given hour, because the 7 infants in the troop were not included 

in MF counts. Due to the inclusion of minutes during which no animals marine foraged 

(count = 0), this value is a composite measure of the time spent MF, and the number of 

animals MF, during each hour. It is thus referred to as the intensity of MF. 

 

Models 

I used Generalized Additive Models (GAMs; Hastie and Tibshirani, 1990; Wood, 2006) to 

examine the relationships between the probability, and intensity, of MF and predictor 

variables. GAMs are semi-parametric extensions of Generalized Linear Models (GLMs) 

which may incorporate both non-parametric smooth- and parametric model components 

(Wood, 2006). Unlike GLMs, GAMs are not based on an assumed relationship between the 

response variable and the predictor variables that is specified a priori. Rather, GAMs fit 

‘smooth’ functions to continuous predictor variables and then use a link function to establish 

relationships between these functions and the response variable (Wood, 2006; Zuur et al., 

2009). As a result, they are referred to as “data-driven models”, because the fitted values are 

not determined by a pre-specified function (Yee and Mitchell, 1991). GAMs can therefore be 

used to model highly non-linear and non-monotonic relationships (Guisan et al., 2002; Zuur 

et al., 2009) such as are predicted with tidal and diurnal patterns. In all models, I included 

predictor variables based on findings of previous studies on other maritime mammals 

(Nielsen, 1991; Bonesi et al., 2000), and observations of MF in Peninsula baboons (Hall, 

1962, 1963). 

I used tensor splines to generate smooth functions in all GAMs. I did so because this 

allows for the use of tensor product splines, which can generate a single smooth function of 

an interaction between two (or more) continuous predictor variables (e.g., tide height and 

swell height) (Wood, 2006). 

I investigated the relationships between the probability of MF during a given hour and 

predictor variables using GAMs assuming a binomial error model. I ran one set of GAMs to 

investigate the relationships between the response and predictor variables across both coasts, 

and one set of models to investigate these relationships when the troop was nearer to the west 

coast (see below for explanation). I evaluated the main effects of season, coast, time since 
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sunrise, tide height, tide status, wind speed, and wind direction, and an interaction between 

wind speed and wind direction, as potential predictors of probability in the models of MF 

across both coasts. I ran the second set of models primarily to determine the potential effect 

of swell height on MF. This could not be done in the first set because swell height data were 

only available for the west coast. I therefore evaluated the main effects of season, time since 

sunrise, tide height, tide status, swell height, wind speed, and wind direction, and interactions 

between tide height and swell height, and between wind speed and wind direction, in the 

models of MF on the west coast only. 

Thus, the full model used to investigate the probability of MF across both coasts 

during a given hour is described by the equation: 

logit(𝑝) = 𝛽0 + 𝑓1(Tide height) + 𝑓2(Time since sunrise) + 𝑓3(Wind speed) +

Season + Coast + Tide status + Wind direction + 𝑓4(Wind speed ×

Wind direction), 

where logit denotes the binomial link function, p is the probability of MF occurring (i.e., 

response = 1), and f1-4 denote the smooth functions realised by tensor splines (Wood, 2006). 

The full model including only hours during which the troop was nearer to the west coast on 

the other hand, is described by the equation: 

logit(𝑝) = 𝛽0 + 𝑓1(Tide Height) + 𝑓2(Time Since Sunrise) + 𝑓3(Swell Height) +

𝑓4(Wind Speed) + Season + Tide Status + Wind direction +

𝑓5(Wind speed × Wind direction) + 𝑓6(Tide height × Swell height), 

where the symbols denote the same quantities and functions, with the addition of the smooth 

function of swell height (f3; and the resultant changes to functions involving wind speed) and 

f6, which denotes the smoothing function realised by tensor product splines (Wood, 2006). 

I investigated the relationships between the intensity of MF and predictor variables 

using GAMs that assume a binomial error model. This type of model was appropriate 

because the values of the response variable were proportions (Zuur et al., 2009). Once again, 

I ran one set of models to investigate the relationships between the response and predictor 

variables across both coasts, and another set to investigate these relationships when the troop 

was on the west coast. I evaluated season, coast, tide height, tide status, wind speed and wind 

direction as potential predictors in the former, and season, tide height, tide status, swell 

height, wind speed and wind direction in the latter. Sample sizes for these models were not 

large enough to allow for an evaluation of interactions between variables. 
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The full model used to investigate relationships between intensity and predictor 

variables is described by the equation: 

logit(𝑃) = 𝛽0 + 𝑓1(Tide Height) + 𝑓2(Wind Speed) + Season + Coast +

Tide Status + Wind direction, 

where logit denotes the binomial link function, P is the average proportion of the troop MF 

during a given hour, and f1-2 denote the smooth functions realised by tensor spline functions 

(Wood, 2006). The full model used to investigate the same relationships when the troop 

marine foraged on the west coast is described by the equation: 

logit(𝑃) = 𝛽0 + 𝑓1(Tide Height) + 𝑓2(Swell Height) + 𝑓3(Wind Speed) +

Season + Tide Status + Wind direction, 

where the symbols denote the same quantities and functions as in the equation above, with 

addition of the smooth function of wind speed (f3). 

 

Model building 

In each set of models, I first evaluated the full model (main effects only) with and without the 

random effect of day (run as generalized additive mixed models), to determine whether the 

addition of this random effect improved the model. I did so because I was unsure whether 

there was temporal autocorrelation between observations which should be accounted for in 

the model (Zuur et al., 2009). I assessed candidate models using second-order Akaike’s 

Information Criterion (AICc) because this criterion is more appropriate than first-order 

Akaike’s Information Criterion (AIC) if n/K ≤ 40, where n is the number of observations and  

K is the number of parameters in the full model (Burnham and Anderson, 2004). In all cases, 

the model without the random effect was the more parsimonious model (indicated by lower 

AICc) and the random effect was therefore omitted from further models. 

I used analysis of deviance tests to ascertain which predictor variables in the full 

models contributed significantly to the deviance explained by the model (Table 4.1 and Table 

4.2). I used p < 0.01 as the threshold for immediate inclusion in the model because the p-

values generated by the these tests are approximate, and values close to 0.05 might therefore 

not indicate true significance (Zuur et al., 2009). In cases where interactions were found to 

contribute significantly to the deviance explained by the model, the main effects of variables 

included in the interaction were not investigated. Those predictor variables that did not 

contribute significantly (p > 0.05) were dropped from the model. If a variable’s contribution 

was  significant, but not highly so (0.05 < p < 0.01),  I  ran  two intermediate models  (one that  
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Table 4.1. Results of analysis of deviance tests for significance of contributions to deviance 

explained by GAMs fitted to probabilities of marine foraging
1
 

 Both coasts   West coast 

Predictor Resid. dev. p-value  Predictor Resid. dev. p-value 

none 780.74      -  none 411.49      - 

te(Tide height) 861.35 < 0.001  te(Tide height)      -      - 

te(Time since SR) 807.33 < 0.001  te(Time since SR) 426.20 < 0.01 

Te(Wind speed)      -      -  te(Swell height)      -      - 

Season 787.28 0.108  te(Wind speed)      -      - 

Coast 781.01 0.609  Season 415.38 0.290 

Tide status 780.76 0.885  Tide status 411.49 0.972 

Wind direction      -      -  Wind direction      -      - 

te(WSP × WDR) 791.07 < 0.01  te(WSP × WDR) 428.86 < 0.001 

    ti(TDH × SWH) 417.56 * 0.015 

1
Residual dev. = residual deviance; te = tensor spline smooth; ti = tensor product spline smooth;Time 

since SR = time (in hours) since sunrise; WSP = wind speed; WDR = wind direction; TDH = tide 

height; SWH = swell height; highly significant values (p < 0.01) are in boldface; * denotes variables 

that were significant at the 5% significance level and were retained in the final model based on the 

AICc values of the intermediate models. 

 

Table 4.2. Results of analysis of deviance tests for significance of contributions of deviance 

explained by GAMs fitted to intensity of marine foraging
1
 

 Both coasts   West coast 

Predictor Residual dev. p-value  Predictor Residual dev. p-value 

none 831.19   none 478.84  

te(Tide height) 868.36 < 0.001  te(Tide height) 520.48 < 0.001 

te(Wind speed) 831.23 0.842  te(Swell height) 492.25 < 0.01 

Season 904.63 < 0.001  te(Wind speed) 489.67 < 0.01 

Coast 855.14 < 0.001  Season 556.08 < 0.001 

Tide status 834.86 0.053  Tide status 480.80 0.164 

Wind direction 831.35 0.681  Wind direction 485.50 * 0.012 

1
Residual dev. = residual deviance; te = tensor spline smooth; Time since SR = time (in hours) since 

sunrise; highly significant values (p < 0.01) are in boldface; * denotes  variables that were significant 

at the 5% significance level and were retained in the final model based on the AICc values of the 

intermediate models. 
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included the variable in question and one that did not) and chose the more parsimonious 

model (i.e., the model with the lower AICc value) as the final model. I then compared AICc 

values of the respective full- and final models, to check whether the final model was more 

parsimonious than the full model in each case. In all cases, the final model was more 

parsimonious than the full model (Table 4.3). 

I used the final models to predict the probability, and intensity, of MF for all 

significant environmental variables under “optimal conditions” (i.e., conditions at which 

predicted probability and intensity of MF were at their maxima). Models were fitted using the 

mgcv package (Wood, 2013) in the statistical platform R (R Core Team, 2014). 

 

 

RESULTS 

On average, over the entire study period, KK baboons spent 1.0% of their time feeding on 

marine foods (Fig. 4.1A). KK baboons exploited marine resources during all four seasons, 

but there was seasonal variation in the amount of time spent feeding on these foods (Fig. 

4.1A) and the percentage of feeding time allocated to marine foods (Fig. 4.1B).  

The proportions of days on which KK troop members marine foraged, and the 

percentage of time spent MF, varied seasonally. MF occurred on more than 60% of days 

during winter and spring, and on only 33% of days in summer (Fig. 4.2A). Although KK 

baboons marine foraged on a high proportion of days in winter, feeding on marine organisms 

was observed during only 8.4% of observation time during this season. In other seasons, the 

percentage of time during which MF occurred ranged from 2.0 to 7.5% (Fig. 4.2B). The 

frequency of exploitation of marine foods also varied seasonally; MF occurred, on average, 

during 1 in every 15.8 hours in summer, and 1 in every 4.6 hours in winter. The proportion of 

observation hours during which MF occurred (hereafter referred to as “MF hours”) was 

higher in the morning than in the afternoon. 

Table 4.3. Second-order Akaike’s Information Criterion (AICc) values of models of probability and 

intensity of marine foraging during a given hour
1
 

 Prob. (both) Prob. (West) Intensity (both) Intensity (West) 

Full model 808.78 445.75 1292.35 784.15 

Final model 804.80 441.29 1289.78 783.86 

1
Prob. = probability; both = both coasts; West = west coast. 
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The members of KK troop 

spent more time feeding on marine 

foods during MF hours in autumn 

(mean ± SD = 34.0 ± 18.9 min, n = 

49) than during any other season 

(Fig. 4.3A). There was little 

variation in time spent feeding on 

marine foods during MF hours on 

east and west coasts (Mean ± SDeast 

= 26.9 ± 17.8 min, n = 77; Mean ± 

SDwest = 24.6 ± 17.1 min, n = 132). 

There was seasonal variation 

in the number of animals MF during 

MF hours (Fig. 4.3B), with means 

ranging from 8.6 (± 6.3, n = 49) in 

autumn, to 5.5 (± 5.1, n = 51) in 

spring (Fig. 4.3B). The number of 

animals MF during MF hours also 

differed between coasts, with means 

of 8.0 (± 5.9, n = 77) animals per 

count on the east coast and 6.8 (± 

5.7, n = 132) on the west coast. 

 

Probability models 

East and west coasts 

Tide height, time since sunrise and the wind speed × wind direction interaction were 

significant predictors of probability of MF across both coasts (Table 4.4). The model 

including these variables, and the main effects of wind speed and wind direction, explained 

17.5% of the deviance in the data. With time elapsed since sunrise held constant at four 

hours, and wind speed of an offshore wind held constant at 25.4 m.s
-1

, the final model 

predicted that the probability of MF occurring across both coasts decreased from 0.87 to 0.06 

as tide height increased from 0.131 to 2.201 m above chart datum (Fig. 4.4A). The 

probability of MF dropped below 0.1 (i.e., MF would be expected during one in ten hours 

under these conditions) at a tide height of 1.681 m above chart datum. The widest confidence 

 
 

Fig. 4.1. Average time KK baboons spent feeding on 

marine foods as a percentage of time available (A) and 

total feeding time (B) available to each baboon. Values 

in graph B were calculated from those in graph A and 

previously determined activity budgets (see Chapter 2). 

Numbers above bars indicate observation time (in 

minutes) during each season; Win = winter, Spr = 

spring, Sum = summer, Aut = autumn. 
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interval around the mean 

predicted probability of MF, for 

a given tide height, was 0.356 

(with tide height at 1.011 m 

above chart datum). 

  The probability of MF 

across both coasts varied 

considerably through daylight 

hours (Fig. 4.4B). With tide 

height held constant at 0.131 m 

above chart datum, and wind 

speed of an offshore wind held 

constant at 25.4 m.s
-1

, the model 

predicted that the probability of 

MF increased from 0.65 at the 

turn of the first hour after 

sunrise, to 0.87 four hours after 

sunrise. Predicted probability 

then decreased at a mildly 

fluctuating, but moderate rate 

with increasing time, until 10 

hours after sunrise (pT=10 = 0.70), 

after which it decreased rapidly 

again (pT=14 = 0.39). The 

predicted probabilities later in 

the day (especially from 10 hours 

after sunrise onwards) were 

however less reliable than those 

earlier in the day as indicated by 

greater width of 95% confidence 

intervals (95% CI). This was a 

result of there being fewer observed values in the latter part of the day due to seasonal 

variation in day length—mean (± SD)  day lengths in winter and summer were 9.9 (±0.1)  and  

 
 

Fig. 4.2. Percentages of days (A), total daylight time in 

minutes (B) and total numbers of observation hours (C) in 

different seasons, and percentages of hours at different 

times of day (D), during which marine foraging occurred. 

Numbers above bars indicate sample sizes; Win = winter, 

Spr = spring, Sum = summer, Aut = autumn. 
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14.1 (± 0.2) hours, respectively. 

The effect of increasing 

wind speed on probability of MF 

was dependent on wind direction 

(Table 4.4)—probability of MF 

increased with increasing offshore 

wind speed (Fig. 4.4C), but was not 

significantly affected by wind 

speed if the wind was blowing 

onshore. With tide height held 

constant at 0.131 m above chart 

datum, and time since sunrise held 

constant at four hours, probability 

of MF during a given hour 

increased from 0.72 in still 

conditions to 0.87 as offshore wind 

speed increased to 25.4 m.s
-1

. The 

reliability    of    these    predictions 

Table 4.4. Summary statistics for predictor variables assessed for significance in GAMs fitted 

to probabilities of marine foraging
1
 

 Both coasts   West coast 

Predictor variable χ
2
 p-value  Predictor variable χ

2
 p-value 

te(Tide height) 75.843 < 0.001  te(Tide height) 60.386 < 0.001 

te(Time since SR) 29.305 < 0.001  te(Time since SR) 13.966 < 0.01 

te(Wind speed) 3.941 0.047  te(Swell height) 8.588 < 0.01 

Wind direction 2.698 0.100  te(Wind speed) 0.000 0.999 

te(WSP: Off) 5.862 < 0.05  Wind direction 1.892 0.169 

te(WSP: On) 0.056 0.813  te(WSP: Off) 0.085 0.771 

    te(WSP: On) 3.623 0.298 

    ti(TDH × SWH) 5.299 < 0.05 

1
te = tensor spline smooth; Time since SR = time (in hours) since sunrise; WSP = wind speed; TDH = 

tide height; SWH = swell height; Off = off-shore wind; On = on-shore wind; significant values (p < 

0.05) are in boldface. 

 
Fig. 4.3. Average duration (A) and average count values (B) 

within hours during which marine foraging occurred in each 

season. Error bars indicate standard deviation; numbers 

above bars indicate sample sizes (no. hrs); Win = winter, 

Spr = spring, Sum = summer, Aut = autumn. 



129 

 

 

 

Fig. 4.4. Relationships between predicted probability of marine foraging (across both coasts) and tide 

height (A), time elapsed since sunrise (B), offshore wind speed (C) and onshore wind speed (D) 

based on results of a GAM. Dashed lines indicate 95% confidence intervals. 
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varied little with changes in wind speed, as the width of the 95% CI remained similarly small 

throughout the range of offshore wind speeds recorded. 

 

West coast 

The interaction between tide height and swell height, and time since sunrise, were significant 

predictors of probability of MF on the west coast (Table 4.4). The model that included these 

variables, as well as the main effects of tide height, swell height, wind speed and wind 

direction, and the interaction between wind speed and wind direction, explained 33.1% of the 

deviance in the data. Similar to the probability of MF across both coasts, the predicted 

probability of MF on the west coast generally decreased with increasing tide height (Fig. 

4.5A). The rate of decrease varied considerably with tide height however, and, perhaps more 

importantly, was affected by swell height. When tide heights were extremely low, swell 

height had little effect on probability of MF (probability actually increased with decreasing 

swell height when tide heights were at their lowest). Through the range of intermediate tide 

heights on the other hand, the rate at which the probability of MF decreased with increasing 

tide heights, increased with increasing swell height. Thus, probabilities of MF (which were 

greater than 0.90 across the entire range of swell heights when tide height was at its 

minimum) were 0.89 and 0.20 with swell heights of 1.11 and 6.26 m respectively. Also, the 

tide height at which probability of MF dropped to little more than zero decreased with 

increasing tide height. Finally, when swell height was at its lowest, probability of MF did not 

fall below 0.10, even when tide height was at the maximum observed value. 

As with the output from the model predicting MF probability across both coasts, the 

predicted probability of MF on the west coast peaked in the latter part of the morning (four 

hours after sunrise) and then decreased. The main differences between the outputs of the two 

models were that the predicted probabilities were higher under optimal conditions (minimum 

observed tide height, maximum observed swell height, and still conditions with wind 

direction set as on-shore), and that the range of values was much smaller, on the west coast 

(Fig. 4.5B). Also, the rate of decrease through the latter part of the day was almost constant in 

the predicted probability on the west coast only (Fig. 4.5C). The output of this model 

suggested that KK baboons were highly likely to exploit marine foods at any time of day if 

they were near the west coast when conditions were optimal (see above). If these conditions 

were met during the fourth hour after sunrise, it was a near certainty that the baboons would 

have exploited marine foods. The reliability of these inferences might be questioned however, 

as the 95% CI around the mean were wide, particularly during the latter part of the day.  
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Fig. 4.5. Relationships between predicted probability of marine foraging (on the west coast) and tide- 

and wave height (A), and time elapsed since sunrise showing the full range of probabilities (B), and 

showing a smaller range of probabilities (C), based on results of a GAM. P = probability; WVH = 

wave height; TDH = tide height; dashed lines indicate 95% confidence intervals; note the difference 

in scale on the vertical axis 

A 
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Proportion models 

East and west coasts 

Season, coast and tide height were significant predictors of the average proportion of the 

troop MF during a given hour (Table 4.5), and were included in the final model. This model 

explained 13.5% of the deviance in the data. The predicted average proportion of the troop 

decreased with increasing tide height (A), similar to the predicted probability of MF (see Fig. 

4.6). The predicted average proportion of the troop MF decreased rapidly as tide height 

increased from 0.131 (the minimum observed tide height) to 0.561 m above chart datum and 

from 0.771 to 1.141 m above chart datum. The model predicted that the maximum predicted 

average proportion of the troop marine foraging (which would occur when the troop marine 

foraged on the east coast, in autumn, with tide at 0.131 m above chart datum), was 0.26. 

Differences between upper and lower limits of confidence intervals were highest at the 

extreme lower and upper tide height values, but did not exceed 0.15 at any tide height. 

The model predicted that the average proportion of the troop MF during MF hours 

was higher in autumn than in any other season (Fig. 4.6B). During spring and summer MF 

hours, the predicted average proportions of the troop feeding on marine foods were similar, 

and were markedly lower than during MF hours in winter and autumn. Even under optimal 

conditions (minimum observed tide height while the troop forages on the east coast) the 

predicted average proportions during spring and summer MF hours were less than 0.13. This 

means that during those seasons, even under optimal conditions, the intensity of MF was low. 

The predicted average proportion of the troop that marine foraged during a given hour was 

higher if the baboons were foraging on the east coast than on the west coast (Fig. 4.6C). If the 

troop  marine  foraged on the east coast during autumn,  with  the  tide  at the lowest observed 

 

Table 4.5. Summary statistics for predictor variables assessed for significance in GAMs fitted 

to hourly average proportions of the troop marine foraging
1
 

 Both coasts    West coast  

Predictor variable χ
2
 p-value  Predictor variable χ

2
 p-value 

te(Tide height) 45.85 < 0.001  te(Tide height) 36.48 < 0.001 

Season 72.50 < 0.001  te(Swell height) 10.11 < 0.05 

Coast 26.21 < 0.01  te(Wind speed) 11.97 < 0.05 

    Season 68.23 < 0.001 

    Wind direction 5.712 < 0.05 

1
te = tensor spline smooth; significant values (p < 0.05) are in boldface. 
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height above chart datum, the model predicted that the average proportion of the troop doing 

so was 0.26. 

  

West coast 

Tide height, swell height, season, wind speed and direction were significant predictors of 

average proportion of the troop MF on the west coast during MF hours (Table 4.5). The 

model that included these predictor variables explained 21.6% of the deviance in the data. As 

in the model described above, the general pattern is that the predicted average proportion 

 

Fig. 4.6. Relationships between predicted average proportion of the troop marine foraging during a 

given hour (on both coasts) and tide height (A), season (B) and coast (C), based on results of a 

GAM. Dashed lines (in A) and error bars (in B – C) indicate 95% confidence intervals. 
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decreased with increasing tide height (Fig. 4.7A). There was however a small increase in the 

predicted proportion of the troop MF (0.26 to 0.30 under optimal conditions) as tide height 

increased from 0.671 to 0.891 m above chart datum. The minimum predicted proportion (at a 

tide height of 1.391 m above chart datum) was just 0.05. The maximum predicted average 

proportion (at a tide height of 0.131 m above chart datum) was 0.48, which is markedly 

higher than the maximum proportion predicted by the model across both coasts. The 95% CI 

around the mean predicted proportions generated by this model were wider than those 

generated by the model of hours on both coasts (Fig. 4.6 and Fig. 4.7; both coasts model 

width of 95% CI mean ± SE:  0.06 ± 0.0016, west coast model width of 95% CI mean ± SE: 

0.26 ± 0.0049).  

The model predicted that as swell height increased, the predicted proportion of the 

troop MF decreased through the lower range of swell heights (< 3.52 m) and then increased 

slightly as swell height increased from 3.52 to 4.61 m (Fig. 4.7B). The minimum predicted 

average proportion of the troop MF was 0.33 (with 3.52 m high swell). The increase in 

predicted proportion as swell heights increased beyond this value was accompanied by a 

slight increase in the width of the 95% confidence intervals. This increase was due to a low 

number of samples at the maximum extreme of tide heights observed during west coast MF 

hours. 

As wind speed increased, the model predicted that the average proportion of the troop 

MF during a given hour would first increase (from still conditions to wind speeds of 3.68 m.s
-

1
), then decrease (as wind speeds increased from 3.69 to 11.62 m.s

-1
) and then increase again 

(as wind speed increased to 21.20 m.s
-1

; Fig. 4.7C). The minimum predicted proportion 

(0.28) was predicted when wind speed was 11.62 m.s
-1

. The width of the confidence intervals 

around the mean predicted proportions changed little with increasing wind speed for the most 

part, but increase slightly at the upper extreme of wind speeds observed during the study. 

The seasonal pattern in west coast MF hours was very similar to that predicted across 

both coasts (Fig. 4.7D). The main difference between the outcomes of the two models was 

that the predicted  proportion of  the troop MF during MF hours on the west coast was higher 

than those  predicted  by  the  model  across  both  coasts  (range PW Coast – PE+W coast: 0.05 – 

0.23). As with tide height, the model of MF on the west coast generated wider 95% CI around 

these predicted proportions than the model that included hours on both coasts (Fig. 4.6B and 

Fig. 4.7D; both coasts model width of 95% CI mean ± SE:  0.11 ± 0.012, west coast model 

width  of  95%  CI  mean  ±  SE:  0.34  ±  0.037).  The  highest predicted proportion for hours  
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Fig. 4.7A – D. Relationships between predicted average proportion of the troop marine foraging 

during a given hour (on the west coast) and tide height (A), swell height (B), wind speed (C) and 

season (D), based on results of a GAM. Dashed lines (in A – C) and error bars (in D) indicate 95% 

confidence intervals. 
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Fig. 4.7E. Relationship between predicted average proportion of the troop marine foraging during a 

given hour (on the west coast) and wind direction relative to the shore. Error bars indicate 95% 

confidence intervals. 

during which the troop was MF on the west coast (which was predicted in Autumn) was 0.48, 

which was 0.23 higher than the predicted proportion across both coasts. 

 The model predicted that a larger proportion of the troop marine foraged during MF 

hours in which on-shore winds were blowing, than during hours in which offshore winds 

were blowing (Fig. 4.7E). With tide height and swell height at their respective minima, the 

predicted proportions in Autumn were 0.40 and 0.48, with offshore and on-shore winds 

respectively. There was however considerable overlap between the 95% confidence intervals 

around the means. 

 

DISCUSSION 

On average, across all four seasons, KK baboons spent just 1.0% of the total time available 

feeding on marine organisms in the intertidal zone. Based on previously estimated activity 

budgets (which indicated that feeding time comprised 37.2% of percentage time activity 

budgets; see Chapter 2), this equates to just 2.6% of feeding time allocated to exploiting 

marine invertebrates. This finding is consistent with findings at other research sites where 

baboons have been shown to feed almost exclusively on plant foods, and only very 

occasionally on animals (Hamilton et al., 1978; Whiten et al., 1987; Okecha and Newton-

Fisher, 2006). Baboons have however been shown to favour plant parts (e.g. seeds; Jones and 

Earle, 1966; Altmann et al., 1987) that are rich in protein relative to other tissues, and other 

locally available plant foods (Whiten et al., 1991; Barton and Whiten, 1994). These food 

items may enable baboons to maintain a constant daily proportional intake of dietary protein 

without consuming large amounts of animal food (Johnson et al. 2013).  However, given that 
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animal tissues are, by and large, rich in protein (DeFoliart, 1975; Defoliart et al., 1982; 

Calvert, 1985; Smith and Partridge, 2004), and that many plant parts consumed by Peninsula 

baboons are low in macronutrients such as protein (see Chapter 2), the small contribution of 

animal foods (inferred from feeding time values) to KK troop’s diet was unexpected. 

Although relatively small throughout the year, the proportion of the troop’s feeding 

time allocated to exploiting marine foods did fluctuate seasonally. Not surprisingly, these 

fluctuations were matched by differences in the percentages of days and hours during which 

the troop marine foraged, as well as the frequency and duration of MF bouts. Changes in time 

allocated to feeding on different foods are typically linked to variation in either the 

availability or quality of foods in primates’ home ranges (Agetsuma and Nakagawa, 1998; Di 

Fiore and Rodman, 2001; McConkey et al., 2003; Alberts et al., 2005). Indeed, baboons 

elsewhere include large amounts of animal tissue, including invertebrates (Hamilton et al., 

1978), in their dietary intake when abundances are unusually high. The results presented here 

therefore suggest that either availability or quality of marine foods consumed by the baboons 

increased (or, conversely that terrestrial foods exhibited declines in availability or quality), 

through autumn and winter. Nevertheless, the proportions of time allocated to feeding on 

marine foods remained small during these seasons. The results reported by Hamilton et al. 

(1978) suggest that baboons are capable of including higher proportions of animal foods in 

their diet than has been observed in KK troop. This begs the question: are there other factors 

limiting their exploitation of this resource? 

 

Abiotic factors limiting MF 

The probability of KK baboons ingesting marine foods, and the intensity of exploitation 

within a given hour when they did so, were, at least in part, determined by tide height—both 

quantities decreasing with increasing tide height. This finding corroborates part of Hall’s 

(1963) statement that Peninsula baboons marine forage “when wind and tide height allow 

easy access to intertidal rock pools and the sea verge.” Thus, it seems that periodic 

submersion of marine foods limits baboons’ access to these foods, thereby decreasing the 

probability and intensity of marine food exploitation. The two studies that have quantified the 

effects of tidal cycles on exploitation of marine foods by other maritime mammals (sensu 

Carlton and Hodder, 2003), revealed that Arctic foxes (Alopex lagopus) only forage for 

marine foods when the tide has almost fully retreated (Nielsen, 1991) and mink (Mustela 

vison) spend less time feeding on marine foods, and feed in less productive high-shore 

habitats, when the tide is high (Bonesi et al., 2000). KK baboons are therefore typical of 
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maritime mammals in being limited to some extent in their exploitation of marine foods by 

advancing tides. 

The limiting effects of advancing tides on intensity of exploitation could be 

particularly pronounced because marine resources are clumped foods (sensu Shopland, 1987). 

As tides rise and further reduce the availability of these foods, the baboons might experience 

increased within-group contest competition (Barton and Whiten, 1993; Koenig, 2002). 

Further research, involving investigation of feeding rates in marine intertidal- and terrestrial 

habitats, and rates of agonistic encounters (which could not be carried out in this study), 

would however be required to determine whether or not this is the case.   

The effect of tide height on probability of MF is not unaffected by other variables, as 

evidenced by the significance of the tide height–swell height interaction. Predictably, and in 

line with Hall’s (1963) observation that baboons on the shore “often had to dash away to 

avoid a wave,” probability of MF decreased more rapidly with increasing tide height as 

offshore swell heights increased. There are two likely explanations for this. The first is that a 

smaller area of the intertidal zone is exposed (and the baboons therefore have access to fewer 

marine food items) when larger swells approach the coast, because runup increases with wave 

size (Raubenheimer and Guza, 1996). The second likely explanation for the above-mentioned 

pattern is that baboons reduce their risk of drowning by not feeding in the intertidal zone 

when the likelihood of being washed offshore is great. Drowned baboons occasionally wash 

up on the Peninsula coast, and Hall (1962) suggested that these animals are most likely 

washed offshore by unexpectedly large waves while foraging in the intertidal zone. This 

seems a plausible explanation as similar events involving humans have occurred on the 

Peninsula (Brundrit, 2009). Baboons are capable of swimming, but they are not particularly 

strong swimmers (Busse, 1980) and being washed offshore might therefore result in death by 

drowning. The likelihood of a baboon being washed offshore should increase as swell height 

increases, but only if said baboon is foraging in close proximity to the waterline. As tide 

height increases so baboons must feed increasingly close to the waterline if they are to obtain 

marine foods, because the area of the intertidal zone that is exposed decreases. It is therefore 

plausible that the effect of the tide height–swell height interaction on probability of MF is, at 

least in part, a result of increased risk of drowning that arises with concomitant increases in 

tide height and swell height. 

The general decline in intensity of MF with increasing swell height can almost 

certainly be explained by the same wave-related factors that limit probability of marine 

foraging (described above). The slight increases in predicted MF intensity on the west coast, 
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as swell height increased beyond 3.52 m, and also as tide height increased from 0.671 to 

0.891 m above chart datum, are more difficult to explain than the general patterns. One 

possible explanation is that these anomalies were caused by an undetected interaction 

between wave height and tide height. The significance of such an interaction seems likely in 

light of the interaction described in the model of probability of MF on the west coast. If such 

an interaction was in fact significant, the severity with which advancing tides limit intensity 

of MF could be expected to increase with increasing swell heights, and vice veR.S.A.. 

Unfortunately, the sample size for this model was too small to allow for testing of the 

significance of such an interaction, because only hours during which the troop foraged on the 

west coast were included in the model. 

Explaining the relationship between probability of MF and time elapsed since sunrise 

is somewhat more difficult than explaining the trends mentioned above (anomalies aside). 

The relatively low probabilities in the early hours of the morning and the late hours of the 

afternoon are likely the results of two other behavioural patterns. Firstly, KK baboons, like 

baboons elsewhere (Altmann and Altmann, 1970), tend to spend time grooming and 

socialising at their sleeping sites in the early morning and, to a lesser extent, the evening (see 

Chapter 2). Time spent grooming is important for maintaining and strengthening social bonds 

(Silk, 2007), which in turn enhance longevity (Silk et al., 2010) and, ultimately, fitness (Silk 

et al., 2003, 2009; Wittig et al., 2008; Sapolsky, 2009). The importance of grooming is 

emphasised by baboons’ reluctance to reduce time spent engaged in this activity, even when 

nutrient-stressed (Alberts et al., 2005; Chapter 2). In light of this, it is unlikely that the 

baboons would sacrifice time spent grooming in the early morning or late evening in order to 

increase time spent feeding on marine foods, irrespective of conditions in the intertidal zone. 

Secondly, the baboons’ use of specific sleeping sites imposes limitations on their 

ranging (Rasmussen, 1979; Whiten et al., 1987), as they start and end each day’s journey at 

either cliffs or trees that are large enough to accommodate all members of the troop (DeVore 

and Hall, 1965; Altmann and Altmann, 1970). KK troop used 16 different sleeping sites 

during the course of this study, none of which were on the actual coast. Thus, no matter 

which sleeping site they used, KK baboons were required to travel hundreds of metres at least 

between sleeping sites and locations at which they might obtain marine foods. It is therefore 

plausible that a combination of this limitation on ranging behaviour, and the baboons’ 

tendency to groom in the early morning and late afternoon, accounts for the lower 

probabilities of MF at the beginning and end of the day. 
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The higher probability of MF in the mid- to late morning (relative to the afternoon) 

could also be linked to the location of sleeping sites. Like baboons elsewhere (Hamilton et 

al., 1976; Hausfater and Meade, 1982; Zinner et al., 2001; Pebsworth et al., 2012), the KK 

baboons use rocky outcrops, cliffs, and large trees as sleeping sites. Of the 16 sleeping sites 

used by KK baboons during the study period, 12 are at relatively high altitudes (in the context 

of their home range) and offer unobstructed views of the shoreline. On days when they have 

slept at these sites, KK baboons may be capable of discerning (through a combination of 

olfactory and visual cues) whether or not environmental conditions are potentially suitable for 

MF, prior to leaving the sleeping site. In other systems, such direct assessment is 

unnecessary, as changes in food availability over weeks or even months are more common 

(Rowell, 1966; Alberts et al., 2005). In such systems baboons’ ability to learn from 

experience (Fagot and Cook, 2006) and build cognitive maps of their home range means that 

they are able to engage in goal-oriented ranging behaviour to maximise their exploitation of 

dispersed food patches (Noser and Byrne, 2007, 2010). Changes in marine food availability 

however occur over the course of hours, and the temporal window of peak availability shifts 

on a daily basis, due to tidal variations alone (Palmer, 1995). Thus, the success of goal-

oriented ranging behaviour is contingent on the baboons’ ability to determine favourable 

environmental conditions in the marine intertidal zone from afar. The location of the majority 

of their sleeping sites means that they are more likely to be aware of favourable conditions in 

the morning, which could explain the higher probability of MF at this time of day. 

 The effect of offshore wind speed on probability of MF is unlikely to be a 

manifestation of a direct influence of wind on the baboons themselves. Wind may affect 

animals directly by, for example, increasing energetic costs of thermoregulation (Ames and 

Insley, 1975; Walsberg and Wolf, 1995), but such an effect would be largely independent of 

wind direction. Offshore wind speed must therefore affect probability of marine foraging by 

acting on other variables that influence this quantity. In this case, it seems likely that strong 

offshore winds mitigate the limiting effects of increasing tide- and wave height to some 

extent. Wind has profound effects on behaviour of oceanic waves (Neshyba, 1987), and also 

affects when and how waves break as they approach the shore (Douglass, 1990; Fedderson 

and Veron, 2005; Holthuijsen, 2008). The effects of moderate-to-strong (> 4 m.s
-1

) offshore 

winds on breaking wave behaviour and runup have not been quantified, but it has been shown 

that wave height (Masselink and Pattiaratchi, 1998) and runup elevation (Ward et al., 1996, 

1998) increase with increasing onshore wind speeds above 6.5 m.s
-1

. This is not surprising 

considering the role of wind stress in wave generation and behaviour (Neshyba, 1987) and 
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the relationship between wind speed and drag coefficient (Smith and Banke, 1975; Smith, 

1988). In light of the above (and the fact that strong offshore winds may generate currents 

directed offshore; McCreary et al., 1989), it seems highly likely that strong offshore winds 

should cause a decline in wave height, and reduce runup elevation. These effects could 

explain the observed pattern as more of the intertidal zone should be exposed, and the threat 

of being washed offshore should be reduced, as offshore wind speed increased. 

The effect of wind speed on intensity of MF is also likely a manifestation of the effect 

of wind on wave behaviour and runup. The general pattern of change in MF intensity is 

similar to that of probability (an increase with increasing wind speed), but there was a 

decrease in intensity of marine foraging through a range of intermediate wind speeds. The 

irregularity could be a result of an undetected interaction between wind speed and wind 

direction. This seems likely, in light of the significance of the interaction in the model of 

probability across both coasts, and also the difference in the effects of light onshore and 

offshore winds on wave behaviour (Douglass, 1990). It is important to note that the ranges, 

and distributions, of wind speeds recorded for off-shore and on-shore winds during this study 

were markedly different. The highest speed recorded for an onshore wind during an hour in 

which the troop fed on marine foods was 8.4 m.s
-1

 (this was 12.8 m.s
-1

 lower than the highest 

speed recorded for an offshore wind). Thus, the proportion of recorded wind speeds 

comprised of values for onshore winds was higher in the lower part of the recorded range, 

and the higher wind speeds recorded (> 8.4 m.s
-1

) were those of offshore winds only. It is 

therefore plausible that the decline in predicted intensity of MF as wind speed increased from 

3.7 m.s
-1 

to 11.6 m.s
-1

 reflects a change in the proportion of speeds recorded for onshore wind 

speeds through this range. The increase in predicted MF intensity with increasing wind 

speeds above 12.5 m.s
-1

 is likely driven by the same factors implicated above in the increase 

of probability of MF with increasing offshore wind speed. 

The explanation above is given further credence by the small, but significant 

difference between predicted intensity of MF under the influence of offshore- and onshore 

winds. This difference is likely caused by the influence of wind on waves prior to breaking 

and the perceived threat to the baboons on the shore. If wind speeds are low (< 3.9 m.s
-1

) 

waves break earlier and in deeper water under the influence of onshore winds, and later and 

closer to the shore under the influence of offshore winds (Douglass, 1990). As a result of the 

difference in depth of breaking mentioned above, waves exhibit lower crest elevation under 

the influence of light onshore winds (Douglass, 1990). This seems the more likely effect of 

onshore winds during the hours included in the model of MF intensity on the west coast, 
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because wind speed of onshore winds during hours included in this model did not exceed 8.4 

m.s
-1

 (Masselink and Pattiaratchi, 1998). If wave height and proximity to the shore at 

breaking point are seen as indicators of the potential threat of being washed offshore, 

baboons might perceive the threat posed by breaking waves as less serious when waves are 

affected by light onshore winds. 

 The above-mentioned abiotic factors clearly affect exploitation of marine foods by 

KK baboons, but the relatively low percentages of deviance explained by the models suggest 

that other factors also play some role in determining how and when marine foods are 

exploited. 

 

Biotic factors that affect MF and future study 

It has been shown that baboons in other regions alter their diets in response to seasonal 

changes in food availability (Alberts et al., 2005). In the case of the KK baboons, the seasonal 

change in diet could be driven by relative changes in terrestrial and marine food availability 

and nutritional quality (Van Erkom Schurink and Griffiths, 1991; Van Doorn et al., 2010; see 

Chapter 2). The results presented in Chapter 2 suggest that the nutritional rewards offered by 

marine foods vary little seasonally, but it seems likely that this is an artefact of limitations of 

the dataset—the condition of marine intertidal organisms is known to fluctuate markedly 

through time (Branch, 1974; Van Erkom Schurink and Griffiths, 1991; Kreeger, 1993; 

Steffani and Branch, 2003 a). Future research involving detailed surveys of food availability 

in marine and terrestrial Peninsula habitats would be necessary to determine which of these 

factors affects how and when Peninsula baboons exploit marine foods. Such research would 

also provide insight into the differences in MF intensity across the two coasts. It is important 

to note however, that due to the heterogeneity of density and condition of marine 

invertebrates along the Peninsula’s coasts (Branch, 1974; Steffani and Branch, 2003b; Xavier 

et al., 2007), surveys of marine foods would have to be carried out at the myriad sites where 

Peninsula baboons marine forage. 

Other properties of the foods consumed by these baboons should also be investigated, 

as it is possible that the nature of the animal foods available to KK baboons precludes more 

extensive exploitation. Marine invertebrates typically accumulate certain elements in their 

tissues over time, with the result that concentrations of elements such as iodine may attain 

extraordinarily high levels (Galtsoff, 1934). Consumed in small to moderate quantities, iodine 

is beneficial to primates, as it plays an important role in various physiological functions, 

particularly during natal and neonatal development (Mano et al., 1985; Cunnane and 
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Crawford, 2003). It becomes toxic however when large amounts are consumed (Zemlyn et 

al., 1981; Backer and Holloweii, 2000), and this alone may moderate baboons’ intake of 

marine invertebrates. To the best of my knowledge, no study has attempted to determine how 

much iodine primates might safely consume, although it has been suggested that upper limits 

are markedly higher than that for humans (Oftedal et al., 1991). Marine foods may comprise 

up to 20% of the diet of crab-eating macaques (Macaca fascicularis) in the mangrove forests 

of Vietnam (Son, 2003), suggesting that marine foods may comprise larger proportions of 

primate diet than that observed in KK baboons. Drawing parallels between the macaques and 

baboons may be of limited use however as the two feed on different types of marine foods 

(Hall, 1962, 1963; Davidge, 1978; Son, 2003) and different marine animals accumulate 

iodine to different extents (Galtsoff, 1934). The chemical composition of the organisms 

consumed by Peninsula baboons should therefore be investigated in future studies. 

The lack of an effect of season on probability of marine foraging is surprising, given 

the seasonal fluctuation in frequency of marine foraging bouts reported above. This finding is 

however almost certainly a result of the modelling approach employed here. Any seasonal 

effects on time spent in close proximity to the intertidal zone were excluded from the model 

because I excluded hours during which the troop was further than 1063 m from the coast (in 

order to test for the immediate effects of conditions on probability of MF). Considering that 

the troop made use of different parts of their full home range during each season (see Chapter 

2), it seems highly likely that this would account for the absence of a seasonal effect on the 

probability of marine foraging. 

If circumstances on the Peninsula change in the future, and more intensive research 

protocols are allowed, focal sampling of baboon behaviour (see Altmann, 1974) should be 

used to determine feeding rates for different foods at the level of the individual. The 

combination of data regarding the availability of different foods, the rates at which these 

foods are ingested, and the chemical properties of both terrestrial and marine foods, could 

help to further elucidate the foraging strategies of the Peninsula’s MF baboons. 

 

Conclusions 

Marine foods comprised only a very small percentage (< 3%) of the diet of KK baboons 

during the study period. Although this percentage was consistently low (< 5%) during all four 

seasons, there was seasonal variation with more frequent bouts, time spent feeding on marine 

foods, and a greater number of animals on the shore during autumn and winter. GAMs 

indicated that increasing tide- and wave height had a significant negative impact on MF 
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frequency and intensity. Time of day was another significant predictor of frequency of MF, 

while wind direction, coast and season significantly affected the intensity of MF. The 

relatively low percentages of deviances (13.5% – 29.7%) explained by the models suggest 

that there are other factors not included in this study that affect baboons’ decisions regarding 

when, and how much, to exploit this abundant source of protein in a generally oligotrophic 

environment. We might greatly improve our understanding of factors affecting use of marine 

foods by Peninsula baboons if future research can be performed at the level of the individual, 

and if temporal and spatial variation in the distribution, relative abundance and quality of 

marine foods can be determined. 
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CHAPTER 5  

 

Synthesis: current understanding of marine 

foraging in chacma baboons and 

recommendations for future research 
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The Cape Peninsula’s oligotrophic terrestrial habitats (Cowling et al., 1996) are juxtaposed 

with productive marine habitats that are home to a variety of abundant, sedentary or 

extremely slow-moving invertebrates (Branch, 1974, 1976; Bayne et al., 1984; Van Erkom 

Schurink and Griffiths, 1991; Robinson et al., 2005). In light of this, and considering 

baboons’ remarkable adaptability and dietary breadth (DeVore and Hall, 1965; Altmann and 

Altmann, 1970; Hamilton et al., 1978; Whiten et al., 1991), it is unsurprising that the 

Peninsula’s chacma baboons (Papio ursinus) include marine organisms in their diet (Hall, 

1962, 1963; Davidge, 1978). The tissues of marine invertebrates are known to be an 

important source of protein for maritime mammals (sensu Carlton and Hodder, 2003) 

elsewhere (Smith and Partridge, 2004), and it seems likely that this would hold true in the 

case of Peninsula baboons. Despite the novelty of exploitation of marine foods by baboons, 

there was a paucity of information on this behaviour in the literature prior to the 

commencement of this study. The first major aim of this study was to provide ecological 

context for this behaviour by investigating the behaviour and diet of a troop of natural-

foraging Peninsula baboons (of which only one remains). The second major aim was to 

quantify the extent of marine foraging in the study troop, and elucidate some of the effects of 

environmental variables that might influence this behaviour. Thus, the five overarching 

questions, to which I sought answers, were: 

1. How do ranging patterns and activity budgets of a non-raiding, marine foraging troop 

of baboons vary seasonally and how do they compare with other baboon troops, both 

on the Peninsula and elsewhere? 

2. How much time do natural-foraging Peninsula baboons allocate to exploiting marine 

foods, and does this vary seasonally? 

3. Do stable isotope signals of hair and faeces reflect proportional contributions of 

terrestrial and marine foods to the diet of non-raiding Peninsula baboons? 

4. If the extent of marine foraging is reflected in the isotope ratios of hair (see above), 

could isotope analysis of hair be used to determine whether or not an unknown 

baboon exploits marine foods? 

5. How frequent are marine foraging bouts, and what environmental factors influence 

the frequency and intensity of exploitation? 

Taken in isolation (in Chapters 2 – 4), the answers to these questions provide insights into 

distinct aspects of marine foraging, and how this behavioural phenomenon might be 

investigated in other contexts. In this final chapter, I synthesise the key findings from each 

chapter and illustrate how these relate to the broader literature regarding primate foraging 
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ecology and the feeding behaviour of maritime mammals. I also highlight some of the 

limitations of the study and provide recommendations for future research on this subject 

matter. 

 

Key findings 

Ranging behaviour and activity budgets 

The Kanonkop (KK) troop (the only extant non-raiding troop on the Peninsula) occupied a 

home range (HR) covering approximately 45 km
2 

and travelled a little more than 6 km each 

day, on average. Comparison of per capita area (derived from home range area) and daily 

path length (DPL) with ranging data for other troops both on the Peninsula and elsewhere 

(DeVore and Hall, 1965; Rowell, 1966; Stoltz and Saayman, 1970; Hamilton et al., 1976; 

Harding, 1976; Anderson, 1981; Whiten et al., 1987; Barton et al., 1992; Hoffman and 

O’Riain, 2012a) suggest that KK troop is nutrient-stressed (Barton et al., 1992; Henzi et al., 

1992). 

The above-mentioned conclusion was given further credence by the results of a model 

of HR cell use frequency. The better of two statistical models (a sparse spatial Generalized 

Linear Mixed Model; SGLMM) indicated that frequency of cell use was affected by habitat 

type, and was positively related to slope, and negatively related to distance-to-coast, altitude 

and distance-to-fresh water. In this context, the effects of habitat type, altitude and distance-

to-coast are all thought to be driven by the baboons’ nutritional needs as these cell 

characteristics were tied to productivity, or ease with which foods could be accessed. These 

findings suggest that the baboons’ primary need for food is the main driver of area use. 

Peninsula baboons are not unusual in the regard, as area use has been linked to food 

availability in baboon populations elsewhere (Harding, 1976; Henzi et al., 1992). 

Importantly, KK did not use the entire home range during each season; the troop used 

a larger proportion of their home range in summer, and a smaller proportion in winter, than 

during other seasons. Also, the DPL varied seasonally, and was longest in summer and 

shortest in winter. Primates in other regions are known to travel further on a daily basis 

during times of food scarcity (Barton et al., 1992; Henzi et al., 1992; Di Bitetti, 2001; Hanya 

et al., 2005; Riley, 2008). The findings reported here therefore suggest that levels of nutrient-

stress fluctuated through the year, being more severe in the warm, dry months. 

The inference regarding nutrient stress, based on ranging data, was corroborated by 

the activity budgets reported in Chapter 2. The dominance of foraging behaviours (sensu 

Bronikowski and Altmann, 1996) in activity budgets is typical of troops that feed only on 



150 

 

natural foods (Post, 1981; Whiten et al., 1987), as opposed to those that supplement natural 

foods with human-derived foods (Forthman Quick, 1986; Altmann and Muruthi, 1988). As 

with ranging patterns, there was however seasonal variation in time spent engaged in 

different behaviours. Similar variation has been reported in previous studies, which have 

shown that baboons increase time allocated to foraging when preferred foods are in short 

supply (Post, 1981; Alberts et al., 2005). In the case of KK troop, foraging time (in minutes) 

was longest in summer and shortest in winter, which once again suggests that nutrient stress 

is more severe during the warm, dry summer than during the cool, wet winter. 

The troop’s diet (estimated from behavioural observations) showed relatively little 

variation across seasons in terms of composition based on broad food types (above-ground 

plant, subterranean plant and marine animal). The only significant difference across seasons 

was that the troop consumed a higher proportion of above-ground plants in spring than in 

summer or autumn. Marine foods comprised only a very small proportion (≤ 3%) of the 

troop’s diet during all four seasons. This was surprising considering that marine foods were 

richer in protein than the vast majority of the baboons’ terrestrial foods, and baboons 

typically show a preference for foods that are relatively rich in protein (Whiten et al., 1991; 

Barton and Whiten, 1994). 

 

Stable isotope ratios 

The results of the stable isotope analysis (Chapter 3) were in accordance with estimates of 

marine food consumption based on scan sample data. As expected (Sealy et al., 1986, 1987), 

terrestrial C3- and C4 foods, and marine animal tissues, were isotopically distinct, with the 

result that isotope-based models could be used to estimate baboon diet composition. Models 

based on isotope ratios of both hair and faeces indicated that marine foods comprise only 

small proportions of the troop’s diet, and that there is a small amount of seasonal variation in 

this quantity. The marine signal in baboon hair is not very strong however, and would be 

overwhelmed by the signal of human foods (inferred from comparisons with other troops) in 

an animal that consumed both. Stable isotope analysis is therefore only a viable tool for 

identifying marine foraging individuals where the individuals in question are known to feed 

only on natural foods. Nonetheless, the stable isotope ratios proved informative here. Both 

stable isotope ratios and scan sample-based estimates indicated that over the course of a year, 

and within each season, marine foods comprised only small proportions of KK baboons’ diet. 

This might not be the case over shorter periods however, as availability of marine foods 
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fluctuates rapidly through time, and the baboons might therefore exploit these foods to a 

greater extent, when they are available. 

 

Factors affecting marine foraging 

MF scan data, like general scan data and stable isotope ratios, indicated that marine foods 

comprise only small percentages of seasonal diets. The proportions of hours (during which 

the baboons fed on marine foods) and the numbers of animals feeding on marine foods during 

these hours varied markedly through the seasons however. Modelling of probability and 

intensity of marine foraging indicated that several environmental variables limit the extent to 

which Peninsula baboons are able to feed on marine foods (Chapter 4). Thus, as was 

expected, high tides and large waves limited marine foraging, but this limiting effect was 

mitigated to some extent by strong offshore winds. Season and coast were also shown to be 

significant predictors of probability and intensity of marine foraging. It stands to reason that 

the differences across seasons, and between coasts, were driven by variation in availability or 

quality of food. Interestingly, the season during which nutrients stress was apparently most 

severe (summer), was also one of the seasons during which the baboons exploited marine 

foods very little and marine foraging intensity was low. This is surprising, and could be 

indicative of a stronger limiting effect of some chemical property of marine foods, such as 

secondary metabolite concentration, which is known to vary through time in marine 

invertebrates (López-Legentil et al., 2007; Sacristán-Soriano et al., 2012). 

 

Limitations of the study 

A major limitation of the study is the lack of individual-level observations of feeding 

behaviour. This limitation arises, albeit indirectly, from the KK troop’s unique status among 

Peninsula troops. Observations of this nature could only have been recorded through close-up 

focal sampling (Altmann, 1974), and would have allowed for estimation of feeding rates for 

different foods by baboons of different age and sex classes. A sampling protocol of this 

nature could not be implemented under the conditions of the research permit granted to me by 

SANParks Scientific Services—time with the troop and proximity to the animals were both 

strictly limited (see Chapter 2). These conditions were specified because the SANParks staff 

wished to minimise human-baboon interactions which might result in KK baboons losing 

their fear of humans and habituating to close human presence. This is understandable as fear 

of humans is one of the major obstacles that baboons must overcome if they are to employ 

raiding as a foraging strategy (Strum, 2010). KK baboons are therefore less likely to become 
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habitual raiders if they remain fearful of humans. Habitual raiding results in greater spatial 

overlap with humans (Kaplan et al., 2011), which is in turn linked to more intense human–

baboon conflict (Hoffman and O’Riain, 2012c). Increased conflict between humans and 

baboons results in higher rates of human-induced injury and death in semi-commensal troops 

(Beamish, 2010), and raiding baboons may fall victim to human parasites and pathogens 

(Drewe et al., 2012). Thus, it is in the baboons’ best interests to minimise their interactions 

with humans, thereby reducing the likelihood of initiating a behavioural progression that 

ultimately leads to habitual raiding. It is worth noting that both troops to the immediate south 

of KK troop’s home range are comprised of habitual raiders despite being within the same 

section of TMNP.  Hence the threat of habituation and raiding remains high for this troop. In 

summary, the lack of individual-level data could not have been redressed without increasing 

the probability of compromising the KK baboons’ wellbeing in the long term. 

 Another shortcoming of the study is a lack of data regarding the abundance of 

different foods, and how this might vary through seasons. Food abundance affects food 

choice and, therefore, diet composition in a variety of primates (Heiduck, 1997; Conklin-

Brittain et al., 1998; McConkey et al., 2003) including baboons (Byrne et al., 1993). This 

variable might therefore be one of the factors that determines how much marine food KK 

baboons consume. An accurate assessment of the availability of all foods available to the KK 

baboons, and how this varies through time, would have been an enormous undertaking 

however, due to the number of species consumed by Peninsula baboons (Hall, 1962, 1963; 

Davidge, 1978) and the rapid fluctuations in the availability of marine intertidal foods 

(Palmer, 1995; Branch et al., 1998). Such an undertaking was, unfortunately, beyond the 

scope of this study. Also, the findings presented in Chapter 4 should inform which variables 

are controlled for in such an assessment of food availability. Thus, an assessment conducted 

without the knowledge gained through this study would have likely been flawed. 

 

Recommendations for future research 

Analysis of secondary metabolites 

The models of probability and intensity of marine foraging described in Chapter 4 explain 

notable amounts of deviance in the data, but a substantial amount of deviance in each data set 

remains unexplained. One of the contributing factors to this could be a somewhat unexpected 

biotic variable that limits exploitation of marine foods by the baboons (Whiten et al., 1991; 

Barton and Whiten, 1994), namely the presence of alkaloids in tissues of marine invertebrates 

(Chapter 3). The presence of secondary metabolites has, to the best of my knowledge, not 
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previously been suggested as a potential factor limiting consumption of marine foods by 

maritime mammals. In the only study in which this issue was investigated, it was shown that 

the two algae species preferred by sheep on North Ronaldsay island both contained phenolic 

antinutritive compounds (Hansen et al., 2003). The presence of secondary metabolites in 

plant and animal tissues typically acts as a consumer deterrent however, and is known to 

affect baboon food choice (Whiten et al., 1991; Barton and Whiten, 1994). 

In light of the above, it is plausible, even probable, that the presence of alkaloids in 

marine invertebrate tissues could be a factor that limits exploitation of marine foods by 

baboons. The deleterious effects of ingestion of secondary metabolites differ according to the 

consumer and the compound, ranging from impaired digestion (Griffiths, 1986) to reduced 

hair growth (Crounse et al., 1962), to lesions on internal organs, and, in some cases, even 

death (Hutton et al., 1958; Glick and Joslyn, 1970; McLean, 1970; Levin, 1971). There is 

interspecific variation in the methods that animals use to mitigate negative effects of 

consuming secondary metabolites (Dearing et al., 2005; Barbehenn and Constabel, 2011), as 

well as the extent to which they are able to neutralise these compounds (Freeland and Janzen, 

1974). It is therefore unsurprising that the effects of particular compounds on consumers vary 

across species (Hutton et al., 1958), as does tolerance of specific compounds (Basey et al., 

1990; Marsh et al., 2003; Bailey et al., 2004, 2007; Wooley et al., 2008; Diner et al., 2009). 

Mammals are known to learn rapidly which foods may cause illness (Bell and Janzen, 1971), 

and will avoid these foods (Kenagy, 1972; Freeland, 1974), even to the point of refusing to 

eat if no other foods are available (De Muelenaere, 1965; Glick and Joslyn, 1970). The fact 

that baboons elsewhere prefer foods with low alkaloid content (Whiten et al., 1991) suggests 

that they are not able to overcome the effects of these chemical compounds with ease. Further 

studies of marine foraging in baboons should therefore place greater emphasis on the 

chemical properties of different foods (specifically the concentrations of secondary 

metabolites), how these change through time and whether they influence the amount of that 

item ingested. 

 

Nutritional rewards and feeding rates 

The seasonal differences in the intensity of marine foraging reported here could have been 

driven by seasonal changes in food availability and, perhaps, food quality in both terrestrial 

and intertidal habitats. Seasonal variation in baboon diet has been documented in other troops 

both on the Peninsula (Van Doorn et al., 2010), and in other populations (Post, 1982; Barton 

and Whiten, 1993; Byrne et al., 1993), and is attributed to seasonal variation in food 
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availability and quality of available foods in different habitats (Byrne et al., 1993; Alberts et 

al., 2005). The KK troop might be expected to exploit marine foods more intensely when 

marine foods offer particularly rich nutritional rewards, and/or when the abundance or quality 

of terrestrial foods is particularly low (Barton and Whiten, 1994; Codron et al., 2006; Dunbar 

et al., 2009). The results presented here (Chapter 2) suggest that this was the case, as intensity 

of marine foraging was higher in autumn and winter than in summer or spring. The average 

protein content of marine foods was higher in autumn than during other seasons, and the 

terrestrial foods consumed in winter were lower in protein than those consumed during other 

seasons, thus rendering marine foods more attractive to baboons (see Chapter 2; Barton and 

Whiten, 1994; Codron et al., 2006). Unfortunately, the abundance of KK troop’s foods was 

not quantified here (see above), so the potential effects of fluctuations in availability cannot 

be directly accounted for. Future studies should therefore include investigation(s) of 

abundance and availability of different foods, and how these quantities vary through time. 

Interestingly, the only terrestrial foods that were analysed that are not markedly 

poorer in protein than marine foods are Leucodendron sp. seeds (which were in fact richer in 

protein than marine foods). Although rich in nutrients, exploitation of these seeds requires 

complex, time-consuming processing of the exceptionally hard cones, which means that the 

seeds might represent fallback foods. This term is frequently used to refer to abundant low-

quality foods, but it may also refer to relatively high-quality foods, the yield of which is 

offset by high processing costs (Alberts et al., 2005). In light of this, theory predicts that the 

baboons should prefer marine foods over Leucodendron sp. seeds as a source of protein 

(Dunbar, 1992; Dunbar et al., 2009) if both are equally readily available. The rapid temporal 

fluctuations in the availability of marine foods, and potential risk of death associated with 

spending time in the intertidal zone, mean that exploitation of these foods is not without cost 

however. The seasons during which marine foods were most intensively exploited were also 

the seasons during which Leucodendron sp. seeds are exploited to greater extents (see 

Chapter 2). This pattern suggests that both foods are in fact fallback foods, which are used 

more extensively when preferred terrestrial foods are in short supply (Marshall et al., 2009). 

Proving that Leucodendron sp. seeds and marine foods are in fact fallback foods (due to the 

costs incurred by baboons through exploitation), would require focal sampling (Altmann, 

1974) to determine feeding rates, and thus nutrient intake rates, for different foods (Marshall 

et al., 2009). These data could then also be used to confirm that the KK baboons, like those 

with access to human foods and agricultural food products (Johnson et al., 2013), forage 

selectively in order to maintain a constant daily intake of protein as a proportion of the diet. 
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The last point in the previous paragraph could in fact be extremely important. It has 

been shown that allocating relatively small amounts of time to feeding on protein-rich marine 

foods may greatly reduce the time required for a maritime omnivore to fulfil its daily nutrient 

requirements (Smith and Partridge, 2004). Considering how much richer in protein the 

baboons’ marine foods are than most of their terrestrial foods (and indeed foods consumed by 

the baboon studied by Johnson et al., 2013), it is plausible that the small amounts of marine 

foods that they consume do in fact allow them to significantly reduce time spent feeding. This 

would however be dependent on feeding rates, and thus foraging reward obtained per unit 

effort, of different foods. If circumstances ever allow, future study should be carried out to 

determine abundance of different foods, and rates at which different foods are consumed, to 

further elucidate the factors that drive or limit marine foraging in chacma baboons on the 

Peninsula. 

 

Trophic enrichment factors 

Although there was general agreement between the models of KK troop’s diet based on stable 

isotope ratios, and estimated diet composition based on behavioural observation, the results 

of the models were not identical. The models that incorporated faecal isotope ratios generated 

estimates of dietary composition that were more similar to those based on behavioural 

observations. This suggests that the TEF values incorporated into the faeces-based models 

were closer to the correct tissue-specific values for baboons than those used in the models 

that incorporated hair isotope ratios (Caut et al., 2008; Bond and Diamond, 2011). This is 

perhaps not surprising, as diet-hair fractionation of nitrogen isotopes has been shown to be 

highly variable (Sponheimer et al., 2003c), and the factors that affect this are still poorly 

understood (Codron et al.; Sponheimer et al., 2003c). Also, isotope ratios of hair may in fact 

not reflect isotope ratios of the bulk diet, but rather protein uptake from different food groups 

(Petzke et al., 2005), due to metabolic routing (Gannes et al., 1997; Voigt et al., 2008). In the 

absence of observational data, it seems that isotope models incorporating isotope ratios of 

baboon foods and faeces, and the TEF values used here, should be used to quantify 

contributions of C3-, C4- and marine foods to the diet of Peninsula baboons (Caut et al., 

2008). Stable isotope analysis of baboon hair might still be used to determine contributions of 

marine foods to baboon protein intake, but further research is required to determine correct 

diet-hair TEF values for baboons (Bond and Diamond, 2011). 
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Conclusion 

Behavioural indicators suggested that natural-foraging baboons on the Cape Peninsula, South 

Africa experienced nutrient-stress that is comparable to that experienced by troops in harsh 

environments elsewhere. Seasonal changes in ranging patterns and time allocated to different 

activities indicated that the study troop’s levels of nutrient stress varied through time 

however. Ecological theory dictates that these baboons should maximise exploitation of foods 

that offer great nutritional rewards, particularly during the season(s) when nutrient stress is 

most severe. Unlike baboons in other regions that are restricted to terrestrial habitats, baboons 

on the Peninsula have access to protein-rich foods in the marine intertidal zone, which might 

provide at least partial relief from nutrient stress. The study animals consumed only small 

amounts of marine food however. Models that incorporated a suite of abiotic factors, and 

proxies for biotic factors, explained some of the deviance in a set of marine foraging data. 

This amount of unexplained deviance suggests that as yet unexplored factors (likely biotic 

factors such as chemical composition of foods) also play important roles in driving or 

moderating exploitation of marine foods by the baboons. 

 Nonetheless, this thesis has enhanced our understanding of marine foraging, a 

behaviour which displays baboons’ remarkable ability to exploit novel food types in diverse 

habitats. This adaptability is one of the key traits that has allowed baboons to thrive in 

human-modified habitats (Else, 1991; Swedell, 2011). Time spent in such habitats is 

associated with frequent contact with humans, and invariably leads to conflict between the 

baboons and their human neighbours (Naughton-Treves, 1998; Naughton-Treves et al., 1998; 

Hill, 2000; Tweheyo et al., 2005; Kaplan et al., 2011; Kaplan, 2013). Costs are incurred by 

both parties (Naughton-Treves et al., 1998; Tweheyo et al., 2005), but those incurred by 

baboons are perhaps the greater, as encounters with humans may result in serious injuries or 

even death (Beamish, 2010). It is therefore imperative that local conservation agencies and 

land managers should take all necessary precautions to ensure that the study troop does not 

make the switch to raiding as a foraging strategy. 

Welfare issues aside, this troop is particularly important from a research perspective 

as baboons are considered to be appropriate analogues for research into human evolution and 

early human diets (Jolly, 2001; Codron et al., 2008; Wrangham et al., 2009). Considering the 

well-documented importance of marine foods in the diets of humans in the southern and 

south-western parts of South Africa over the last one-hundred-and-fifty-thousand years 

(Sealy et al., 1986; Sealy, 1997; Marean et al., 2007; Jerardino and Marean, 2010; Marean, 

2010), and the hypothesised role of these foods in human evolution (Broadhurst et al., 2002; 
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Cunnane and Crawford, 2003), this troop may provide a rare and valuable window into the 

challenges faced by early humans as they sought to exploit these foods. Further studies of this 

troop that do not involve habituation or protracted close human contact might therefore 

provide valuable insights in the context of research on human evolution. 
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Appendix A. Table of nutritional and chemical properties of different foods consumed by KK baboons over the course of the study
1
 

Food group Genus Structure(s) AP (%) NDF (%) ADF (%) CT (%) PLP (%) D M W 

Above-ground Arctotheca Whole plant 2.44 24.08 17.45 0.09 0.94 - - - 

 Aspalathus Flowers 3.00 33.20 21.91 0 5.60 - - - 

 Carpobrotus Leaf-bases 7.54 18.68 11.60 4.46 5.54 - - - 

 Centella Whole plant 6.49 25.91 17.81 0 2.47 - - - 

 Chrysanthemoides Flowers 5.26 28.43 18.11 0 2.72 - - - 

 Cullumia Flowers 2.39 42.87 24.35 0 0.99    

 Elegia Stems 3.27 54.59 21.42 0.70 0.72 - - - 

 Erica Flowers 7.14 28.43 21.63 2.04 6.66 - - - 

 Leucodendron Seeds 48.85 31.04 20.57 0.08 0.27 + + + 

 Leucospermum Seeds 9.61 40.10 31.89 0.22 2.50 +/- +/- +/- 

 Lolium Leaves 4.73 30.28 16.47 0 1.36    

 Mimetes Flowers 2.74 63.84 49.59 0.50 1.89 - - - 

 Nylandtia Fruit 1.91 66.23 45.80 0 0.3 - - - 

 Olea Fruit 2.15 51.73 33.03 0.17 2.45 - - - 

 Otholobium Whole plant 2.95 26.75 17.76 0.17 1.49    

 Pterocelastrus Leaves 7.90 33.75 20.51 3.02 4.86 - - +/- 

 Salvia Flowers 5.94 24.65 15.95 0 4.63 - - - 

 Searsia Fruit 6.94 43.37 26.38 0.69 1.43 - - - 

 Stenotaphrum Leaves 4.49 53.96 23.50 0 0.56 + - + 
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Appendix A continued. 

Food group Genus Structure(s) AP (%) NDF (%) ADF (%) CT (%) PLP (%) D M W 

 Stoibrax Leaves 5.86 28.42 18.99 0 1.36 - - - 

 Tetraria Stems 2.50 46.32 19.92 0.33 0.29 - - - 

 Willdenowia Seeds 5.03 73.01 31.61 0.21 0.96 - - - 

           

Subterranean Eriospermum USO 2.91 29.63 19.81 0.80 0.77 - - - 

 Hyobanche USO 1.95 32.77 20.18 0 4.48    

 Sporobolus Rhizome 2.61 48.13 22.60 0 0.29 - - - 

 Watsonia USO 5.67 31.41 7.90 3.61 2.43 - - - 

           

Marine Cymbula Soft tissue 28.45 11.15 0.84 0 0.28 + + + 

 Mytilus Soft tissue 24.79 10.74 0.84 0 0.28 + + + 

 Scutellastra Soft tissue 31.14 10.48 2.10 0 0.30 + + + 

1
Values are averages where multiple samples from a genus were analysed; Missing values indicate that insufficient sample mass was available for the 

test in question; AP = available protein, NDF = neutral detergent fibre, ADF = acid detergent fibre, CT = condensed tannins, PLP = polyphenols, D = 

Dragendorff reagent, M = Mayer reagent, W = Wagner reagent; CT and PLP percentages are equivalent to quebracho tannin and pyrogallol 

respectively; USO = underground storage organ; “-” denotes a negative results, “+” denotes a positive result, “+/-” denotes positive and negative 

results for different samples of the same genus. 
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Appendix B. Table of δ
13

C and δ
15

N values of hair sub-samples used in 

experiment testing for effects of trapping glue and mineral turpentine on 

hair isotope ratios
1
 

 δ
13

C (‰)  δ
15

N (‰) 

Troop Control Treatment  Control Treatment 

DG     -20.8      -21.0  5.5 5.4 

JTR     -20.3      -20.2  6.2 6.3 

MT1     -21.1      -21.3  6.2 6.2 

UNK     -23.5      -22.8  5.5 6.0 

1
all samples were plucked either from animals that had been 

anaesthetised for other research projects or had died as a result of 

conflict with humans; “control” hairs were wiped down with 95% 

ethanol three times and allowed to dry; “treatment” hairs were stuck to 

an unused dart and then processed following the methods described in 

Chapter 3; Wilcoxon’s paired rank sum tests indicated that control and 

treatment hairs did not differ in terms of either δ
13

C or δ
15

N; DG = Da 

Gama Park, JTR = John Travolta, MT1 = Main Tokai 1, UNK = 

Uknown. 
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Appendix C. Table of Diet composition estimates (of food groups based on 

photosynthetic pathways in the case of terrestrial foods) of adult male and female 

baboons in KK troop based on time spent feeding on different foods recorded 

through instantaneous scan sampling. 

 Terrestrial C3 Terrestrial C4 Marine 

Female 94.7 1.7 3.6 

Male 92.9 2.1 5.0 

 

 

 

 

 

 

 

 


